
The Smalltalk MVC paradigm with pluggable viewsTong Sin YinChow Pui YeePrefaceThis paper is a revision of the technical report entitled The Smalltalk-80 MVC paradigm with pluggable viewswritten by Duane Szafron and Brian Wikerson.SummaryThis paper describes the SmalltalkModel-View-Controller (MVC) user interface paradigm using three exam-ples. It is intended for readers who are familiar with Smalltalk, but not with the user interface or graphicsclasses. It has been written so that readers can learn to build interface objects quickly and in a regularmanner. Part of this paper may also be of interest to readers who have used the MVC paradigm already,since it describes a facet of the MVC paradigmwhich is not well documented in the lterature: pluggable views.The �rst example is a simple but complete implementation of a dice using a standard MVC approach.It illustrates the communications which take place between the model, view and controller which representan interface object. The second example is a re-implementation of a dice using a pluggable view. We alsodiscuss the rationale behind and the importance of pluggable views. The third example is a dice with twodi�erent views. It shows how pluggable views can be used in more complex objects.KEY WORDS: Smalltalk, Model-View-Controller, Pluggable View

1

1 IntroductionIn the Model-View-Controller (henceforth called MVC) approach to user interfaces, user interface objectsare represented as a triple of sub-parts: a model, a view and a controller. Each of the these sub-parts isresponsible for a di�erent aspect of the interface object's state and behavior.In general, an interface object represents a real world entity. For example, a bitmap image on the com-puter screen can be used to represent one of the faces of a dice. In the terminology of Schneiderman's theoryof user interfaces [Schneiderman], a user interface object contains computer semantics which relate directlyto the task semantics of a real world entity. The task semantics in the dice example consist of a task object(the value of the dice) and a task action (rolling the dice). The computer semantics consist of a computerobject (a region of the screen representing the dice, which has six di�erent appearances depending on theresult of rolling) and a computer action (changing the appearance of the region). In the MVC paradigmthe computer semantics are subdivdied into: visual information, interaction information and non-visual,non-interaction information.1.1 The Components of the MVC paradigmThe model of an interface object is the sub-part containing all of the non-visual and non-interactive computersemantic informaton. In general, the model of an interface object contains an abstract representation of thestate of the object. Its protocol contains messages for changing and revealing its state.In the case of the dice, the model would consist of a six-value state which ranges from one to six, amessage to set the initial dice value, a message to roll the dice and a message to reveal the state. However,the model would not contain information pertaining to how the dice is displayed or how a user could initiatea change of its state.The view of an interface object is the sub-part containing all of the visual computer semantic information.In general, a view might contain: display objects, size and location information, and highlighting informa-tion. Its protocol may contain messages for displaying itself, changing its size and location, determining if apoint is within itself, and highlighting and de-highlighting aspects of itself.In the case of the dice, the view would consist of: a set of images representing the six faces of a dice andmessages for displaying itself.The controller of an interface obejct is the sub-part that is responible for capturing the user's attmeptsto manipulate the object. In general, a controller's protocol usually contains messages for asking if it wouldlike to become active, asking if it would like to remain active, and for initiating and terminating controlwhen user actions (mouse clicks or key pressed) are taken.In the case of the dice, the controller would also contains protocol to roll the dice (change the state ofthe model) when the user clicks the left mouse button within its view.1.2 The MVC Paradigm in SmalltalkAn instance of the class ControlManager is used to pass control among all of the existing controllerssince in the Smalltalk implementation of MVC, only one controller can be in control at any one time. Thecontroller which is in control is said to be active.The MVC paradigm di�ers from the event driven paradigm in that, once a controller becomes active,control is not relinquished until the controller is �nished or until a special action (for example the user typinga control-C) interrupts the controller. When a controller starts up, it usually performs some initial action.It then performs a control loop in which it repeatedly checks to see if it wants to remain active, and if so it2

performs its control activity. When a controller exits its control loop, it generally performs some terminationaction.The three sub-parts: model, view and controller are not really combined into a single interface object.In the most common situation, an interface object is represented by three seperate objects: one model, oneview and one controller as shown in Figure 1.
Figure 1: Three separate objects: model, view and controllerIt should be noted that many of the interface objects in the Smalltalk image do not exactly divide theirresponsibilities in this way. For example, TextEditorController objects perform many of the tasks whichshould be performed by TextEditorView under this classi�cation. However, these tasks have been movedto TextEditorController for e�ciency reasons. A TextEditorController is a sub-class of the class Para-graphEditor, and a ParagraphEditor acts as both a view and controller. For example, it echoes its owncharacters to the screen as they are typed, and performs editing operations on its text, which it stores directly.In many cases, the structure of an interface object is more complex than a simple triple: one model, oneview and one controller. The simplest variation is a hierarchical interface object where one interface objectcontains others. When an interface object is composed of sub-objects in a hierarchical manner, the hierarchyis represented in the views of the objects. It is reasonable to use the views to present the hierarchy since thehierarchy is usually a visual one.For example, consider a double-dice which is built by using two dice. We can either roll the dice sepa-rately or roll the two dice together. The views of the two dice are called sub-views of the double-dice viewand the double-dice view is called the super-view of each dice view. Logically, we can regard such an ob-ject as three MVC triples: one triple for each dice and one triple for the composite object as shown in �gure 2.Although we could use three separate models for the double-dice and the composite object, it is alsopossible to use three view-controller pairs and a single model. The model would contain two six-value staterepresenting the position of the double-dice. This alternate representation requires the use of pluggable viewswhich will be discussed later in this paper.1.3 A Simple Model for MVC CommunicationSince the sub-parts of an interface object are represented by three distinct objects, they must communicateby sending messages to each other.The standard communication model is shown in Figure 3. It consists of four separate communicatons.3

Figure 2: A hierarchical interface object1. The user performs an action.2. The controller interprets this action as a request to change the state of the model. The controllerinforms the model.3. The model changes its state and then informs the view that it has changed.4. The view then asks the model for its current state and updates itself accordingly.
Figure 3: The Standard MVC communication modelWhen a model changes its state, it informs its view by using the concept of object dependency. Con-ceptually, if an object, A, is a dependent of an object, B, then whenever object B changes itself, it sends amessage to object A to update itself. In this case, the view is a dependent of its model so the communicationlabelled, 3, in Figure 2 is achieved through this dependency.This communication model will be used to implement MVCs which do not use pluggable views. Whenwe introduce pluggable views later, it will be replaced by a di�erent communication model.

4

2 Some Required classes and protocolsTo understand how MVCs are implemented it is necessary to understand six classes: Model, View, Con-troller, ScheduledWindow, CompositePart and Wrapper. The classes View and Controller areimportant because all views and controllers are de�ned as subclasses of them respectively. The classesScheduledWindow, CompositePart and Wrapper are used as container of the views.2.1 ModelA Model is an object with one instance variable. The variable dependents stores a collection of objectswhich are dependents of the Model. In fact, in Smalltalk, every object can has its own dependents. In classObject, dependents are stored in the global variable, DependentCollection.In the category 'private', two instance methods are provided to manipulate the dependents stored in amodel. These two methods override the ones declared in class Object. The method #myDependents: setsthe dependents of a Model while the method #myDependents returns the dependents of a Model.2.2 ViewClass View is the subclass of the class DependentPart. The instance variable controller is declared inclass View and the instance variable model is declared in class DependentPart, which is the superclass ofclass View.Class View does not have its own instance creation method. The one which is most commonly usedis the class method #model:. This message takes a model as its argument. Subsequently, the instancevariable model is set to this argument in the instance method #setModel: which is declared in the category'private'. If a View is not created by the class method #model:, we need to explicitly set the variable modelby sending the message #model: (which is declared in the category 'accessing' of class DependentPart)with a model as the sole argument. Besides setting the variable, the View is added as a dependent ofModel. This is done in the instance method #setModel of class DependentPart. Simply setting aModelto the instance variablemodel directly results in failure to create the dependency between View andModel.The category 'controller accessing' contains four methods: #controller, #controller:, #defaultControllerClassand #defaultController. Each view should have its corresponding controller. The �rst two methods sim-ply return the controller of a View and set its controller respectively. The third method returns the classof the default controller. The forth method returns an instance of the default controller class. The defaultinstance creation method used in #new.2.3 ControllerA Controller is an object with three instance variables. The �rst two are model and view which are usedto communicate with the other sub-parts. The variable sensor is an instance of InputSensorwhich is usedto handle user action such as mouse click and keyboard pressed. Usually, the initialization (sometimes alsothe instance creation) of a Controller is done by the view.The categories 'model access' and 'view access' provide methods to set and return the value of model andview respectively. The category 'cursor' contains the method #viewHasCursor only. This method returnstrue if the cursor point of the receiver's sensor (usually, we are referring to the mouse) is within the boundaryof the receiver's view.The category 'control defaults' contains four methods: #controlActivity, #controlToNextLevel,#isControlActiveand #isControlWanted. The method #controlActivity is called repeatedly by #controlLoop(see next paragraph) when the controller is active. This method is usually overrode to perform appropriateactions. For example, we can detect which mouse button is being pressed and ask the model to change some5

of its states or perform an action. The method #controlToNextLevel ask the controller's view if any of itssubviews wants control. If so, the control is passed on the appropriate one. The method #isControlActivereturns true if the receiver is active. This method can be overrode to change the condition to determinewhether a controller is active or not. The method #isControlWanted returns true if the controller wantscontrol. The default behavior is to answer true if #viewHasCursor returns true. Again, we can override itto suit our application.The following is the method #controlToNextLevel :controlToNextLevel| aView |aView := view subViewWantingControl.aView == nil ifFalse: [aView startUp]The method #subViewWantingControl is de�ned in the category 'control' in class VisualPart. The defaultbehavior of this method is to return nil as we assume that the view does not have any subview. Therefore,if the view needs to pass control to its subviews, we have to override this method in the subclasses of View.The category 'basic control sequence' contains six methods: #poll, #startUp, #checkForEvents,#controlLoop, #controlInitialize and #controlTerminate. The method #poll looks for any activity.If there is no activity for a certain period of time, it will wait on semaphore. The method #checkForEventsasks the window in which is the container of the view to check for events. The method #startUp gives con-trol to the controller. It then sends three messages to itself in the following order: #controlInitialize,#controlLoop and #controlTerminate. The method #controlInitialize initializes the controller. Some-times it is re-de�ned in subclasses to perform speci�c action when the controller gains control. In the method#controlLoop, the controller sends #isControlActive to itself. If true is returned, the controller sends it-self the message #controlActivity. It is repeated until #isControlActive returns false. The method#controlTerminate is sometimes re-de�ned if some speci�c actions are needed to be performed when thecontroller gives up control.The default behavior of the method #isControlActive is that the controller still wants control if thecursor is in its view and the blue mouse button is not pressed.isControlActive^self viewHasCursor and: [self sensor blueButtonPressed not]In Smalltalk, the mouse buttons are referred as <red>, <yellow> and <blue>. The reason is that we arenot always working with a 3-button mouse. Therefore, using notation like <left>, <middle> and <right>does not make sense all the time. The following table shows the naming convention of the mouse button inSmalltalk. color position functionred left selectyellow middle operateblue right windowThe <select> button is used to select a window location or a menu item, position the text cursor, orhighlight text. The <operate> button brings up a menu of operations that are appropriate for the currentview or selection. This menu is referred to as the <operate> menu. The <window> button brings up themenu of actions that can be performed on any Smalltalk window, such as move and close.6

2.4 ScheduledWindowA ScheduledWindow is an object with thirteen instance variables. The six of them which are the mostimportant will be discussed. label is a String. It is the title of the window which appears at the top of it.minimumSize and maximumSize are the minimum and maximum size respectively of the display box of aScheduledWindow. component is a visual component, an object that is installed and displayed in the Sched-uledWindow. The visual component of a ScheduledWindow can be an instance of DependentPart,CompositePart ,Wrapper or their subclasses (e.g. View is a subclass of DependentPart. We can alsoinstall an object such as Image or a ComposedText as its component. Each ScheduledWindow has itsown controller and it is stored in the variable controller (an instance of StandardSystemController or itssubclasses). A ScheduledWindow may have a model associated with it, and it is stored in model.The category 'accessing' contains many methods to set the attributes of a ScheduledWindow. Thecategory 'scheduling' provides various methods to open a ScheduledWindow. The simplest way to createand open a window is shown in the following code:ScheduledWindow new openThis window is created with default inside color, no label, default minimum size and no restriction of itsmaximum size. We can create a window with more features by the following code:| aWindow |aWindow := ScheduledWindow new.aWindow label: 'Hello World!'.aWindow minimumSize: 200@100.aWindow maximumSize: 200@100.aWindow insideColor: ColorValue white.aWindow open.
Figure 4: An instance of ScheduledWindow2.5 CompositePart and WrapperThe instance variable component of class ScheduledWindow must be a single visual components. Thus,we need an intermediate object in order to hold two or more components of the same window. The instancevariable component of class CompositePart is an ordered-collection of Wrapper. Each wrapper holds avisual component.Several methods are provided to add a visual component to an instance of CompositePart (or one ofits subclasses). One of them is #add:at:. The �rst argument is an instance of any subclasses of Visu-alComponent (e.g. View) and the second argument is a Point. The visual component is added on aTranslatingWrapper. The second argument of #add:at: speci�es the position of the top left corner of7

the TranslatingWrapper. Other methods for adding components can be found in the category 'adding-removing'.A Wrapper holds a VisualComponent to which it forwards messages. Although class Wrapper isnot an abstract class, instances of it are seldom used. Usually, we use its subclasses such as Translating-Wrapper, BoundedWrapper and BorderedWrapper. An instance ofWrapper is created by the classmethod #on: with a visual component as the argument. For the subclasses of Wrapper, othermethods are used. class instance creation methodWrapper #on:Translatingwrapper #on:at:BoundedWrapper #on:in:BorderedWrapper #on:in:2.6 Protocol for dependent objectsThe concept of dependent objects is implemented in Smalltalk by providing various instancemethods in the protocol for class Object.The method #addDependent adds the argument object as a dependent of the receiver whilethe method #removeDependent: removes the argument object from the dependents list of thereceiver. The method #dependents returns an OrderedCollection (a collection of objects thatcan be accessed individually by an integer index) of objects dependent on the receiver. Theabove methods are de�ned in the category 'dependent access'.Each object should send itself the message, #changed: if some aspect of itself changes, wherethe aspect which changed is the argument. The default behavior of this message is to send#update: messages to each of its dependents with the aspect as the argument. The message#update: should be implemented by all dependents to take whatever action is necessary whenthe given aspect of the object on which they depend has changed.When the changes of state of the model do not need to be parameterized by any aspect,we can use the method #changed. The method #changed: and its variation is de�ned in thecategory 'changing' while the method #update: and its variation are de�ned in the category'updating'.2.7 Redisplaying a viewThere are two basic situations in which a view must redisplay itself:� Model updates { the model changes in a way that a�ects the view� Window damage repair { the window is refreshed, an overlappingwindow is moved . . . etc.It's very simple to equip a view with the means to handle either kind of event:� Make sure the view responds to #update:.� Make sure the view responds to #displayOn: by displaying itself on the graphics contextthat is passed as an argument. The view should, of course, use the current state of themodel.The default behavior of the method #update: (which is de�ned in the category 'updating' ofthe class DependentPart) is to send the message #invalidate to itself. To express its e�ect in8

simplest terms, this method simply redisplay the area spanned by a visual component.It should be noted that we should not send the message #displayOn: to the view itself inthe method #update:. By doing this, the view will end up displaying itself twice.

9

3 MVC for a DiceIn this section we will describe the model, view and controller of a simple dice. The dice canhave value from 1 to 6 inclusively. If the dice is pressed, the dice is rolled and a new value willbe displayed. The value of the dice is represented by the same number of black spots. Figure5 shows the dices of six di�erent values embedded in ScheduledWindows.Figure 5: A visual representation of the six states of a diceFollowing convention, the model, view and controller classes are named: Dice, DiceViewand DiceController respectively. To open the dice, try this:DiceView openOn: Dice new.3.1 Class DiceThe class Dice is a subclass of the class Model. It has a single instance variable, value, whichhas an integer value between 1 and 6.Model subclass: #DiceinstanceVariableNames: 'value 'classVariableNames: ''poolDictionaries: ''category: 'Example-Dice'3.1.1 Class Messages for DiceThere is a single class message, #new, which creates a new instance and initializes its value with1.Category 'instance creation'new "Answer with an initialized instance of the receiver"^super new initialize3.1.2 Instance Messages for DiceThere are three categories of instance messages: 'instance-release', 'accessing' and 'modifying',each containing a single instance message. The messages are: #initialize, #roll and #value,which initializes an instance to have value 1, changes the value randomly and answers thecurrent value respectively. 10

Category 'initialize-release'initialize"Initialize the variables of the receiver"value := 1Category 'accessing'value"Answer with the current value held by the receiver"^valueCategory 'modifying'roll "Set my value to be a random integer between 1 and 6"| rand |rand := Random new.value := (rand next * 6 + 1) truncated.self changedIn the method for #roll, the receiver sends itself the message #changed so that all of itsdependents (in this case its view(s)) will be sent the message #update:.3.2 Class DiceViewThe class DiceView is a subclass of the class View with one new instance variables images,which stores the six di�erent value images of dice.View subclass: #DiceViewinstanceVariableNames: 'images 'classVariableNames: ''poolDictionaries: ''category: 'Example-Dice'3.2.1 Class Messages for DiceViewThere are two class messages for DiceView and both are instance creation messages.Category 'instance creation'The �rst instance creation message is a general message which is used for creating a DiceView.It simply creates a new instance of DiceView and sends it an initializationmessage which passeson the model.model: aDice"Answer and initialize a new instance of DiceView."^super new model: aDice. 11

The second instance creation message creates an instance of the class ScheduledWindow,creates a DiceView, and embeds the DiceView in the ScheduledWindow. It then sends themessage #open to the ScheduledWindow so that the view is displayed on the screen.openOn: aDice"Create an instance of the receiver in a ScheduledWindow"| diceView window |window := ScheduledWindowmodel: aDicelabel: 'Dice'minimumSize: 100@120.window maximumSize: 100@120.diceView := self model: aDice.window component: diceView.window open3.2.2 Instance Messages for DiceViewThere are three categories of instance messages de�ned in the class DiceView: 'initialize-release', 'controller access' and 'displaying'.Category 'initialize-release'Category 'initialize-release' contains a single initialization message which sets the instancevariablemodel (in super class) to the argument passed and stores the six images in the instancevariable images in the form of a dictionary. Each integer value has its corresponding image.model: aDice"Initialize the image of dice."super model: aDice.images := Dictionary new.images at: 1 put: (ImageReader fromFile: 'one.bmp' asFilename) image.images at: 2 put: (ImageReader fromFile: 'two.bmp' asFilename) image.images at: 3 put: (ImageReader fromFile: 'three.bmp' asFilename) image.images at: 4 put: (ImageReader fromFile: 'four.bmp' asFilename) image.images at: 5 put: (ImageReader fromFile: 'five.bmp' asFilename) image.images at: 6 put: (ImageReader fromFile: 'six.bmp' asFilename) image.Category 'controller access'Category 'controller access' contains a single message which returns the class of controllerassociated with this view class. In this case, the default controller class is DiceController.defaultControllerClass"Answer the class of the controller associated with me."^DiceController 12

Category 'displaying'Category 'displaying' contains a single message which displays a suitable image according tothe value of the dice.displayOn: aGraphicsContext"Display an image."| currentValue |currentValue := model value.(images at: currentValue) displayOn: aGraphicsContext.3.3 Class DiceControllerThe class DiceController is a subclass of the class Controller with no new instance variablesor class messages. There is only one instance message which is a re�nement of a message inclass Controller.Controller subclass: #DiceControllerinstanceVariableNames: ''classVariableNames: ''poolDictionaries: ''category: 'Example-Dice'3.3.1 Instance Messages for DiceControllerCategory 'control defaults'Category 'control defaults' contains a single message which de�nes the control activity whenthe controller is active. If the red button 1 is pressed, it asks the model to roll and then waitsfor the button to be released.controlActivity"If my <select> button is pressed, roll the model,then wait for the button to be released"self sensor redButtonPressedifTrue: [model roll.self sensor waitNoButton.].^super controlActivity
1Red button is the left mouse button in UNIX and Microsoft environment.13

4 Pluggable ViewsA pluggable view is a view which communicates with its model through messages whose selec-tors are stored in the view. There are two reasons for using pluggable views, one pragmaticand one aesthetic.4.1 The Rationale for Pluggable Views4.1.1 Pragmatic ReasonThe pragmatic reason for using pluggable views is that if they are used, then multiple view-controller pairs of the same type can be used on di�erent aspects of the same model.For example, consider a two-dice where the state of each dice is independent. A singlemodel can be used, whose state consists of two, six value variables. Each dice can be repre-sented by the view-controller pair of a dice. When one of the dices is rolled, its view mustinform the model. However, if both dices sent the same message to the model, then the modelwould not be able to tell which dice was rolled. If however, each dice sent a di�erent messagethen the model would be able to di�erentiate between the two dice and updates its statecorrectly.In order for this technique to work, it is necessary that the view-controller pair commu-nicates with the model using message selectors which are stored in instances of the view-controller pairs. Since both the view and the controller communicate with the model, it seemsnecessary to store some of these message selectors in the view and some in the controller.Instead, we localize the pluggability of the view-controller pair in the view. We do this bymodifying the communications model shown in Figure 3 so that all communication with themodel is done by the view. For this reason, we use the term pluggable view instead of a termlike pluggable view-controller pair. The communication model for pluggable views is shown inFigure 6.
Figure 6: The pluggable MVC communication model1. The user performs an action.2. (a) The controller interprets this action as a request to change the state of the model.The controller informs the view.(b) The view informs the model using the action selector stored in itself.3. The model changes its state and then informs the view that it has changed.4. The view then asks the model for its current state using the state selector stored in itselfand updates itself accordingly. 14

As a second example where pluggable views are advantageous, consider a browser whichcontains two lists, each in a separate view. If a user adds an element to the �rst list, then thecontroller could send a message like:model addElement: newElementto its model. However, if the user added an element to the second list, then the same messagecould not be used. If it was, then the model would not be able to determine which list to use.One way to solve this problem is to use view-controller pairs from di�erent classes for eachlist. However, this would result in a needless proliferation of classes if the view-controller pairswere identical except for this one di�erence. A better solution is to use two di�erent instancesof the same pluggable view class.For example, if there are two lists in a programming environment browser that representmodules which are organized into categories, then the messagemodel perform: actionMsg with: elementcould be invoked by both views. In one view, actionMsg and element would be bound to#addCategory: and an object representing a new category respectively. In the other view, theywould be bound to #addModule: and an object representing a new module respectively.4.1.2 Aesthetic ReasonThere is an aesthetic advantage to use pluggable views, even if multiple instances of the sameview class are not going to be used by one model. The advantage occurs when a view is builtfor one model, but then is used by another model at a later date. This re-usability of classesis one of the major goals for object-oriented design.In this case, if a pluggable view is not used, the second model to use the view must usethe message selector which was de�ned when the original MVC was constructed. However,this message selector may not be appropriate for the new model, either because it is alreadybeing used for another purpose by the model, or because its meaning was specialized to applyto the original model.4.2 AdaptorsThere is an alternative to pluggable views referred to as adaptors. It involves the creation of anew object called an adaptor which is responsible for communications between the model andthe view-controller pair. In this case, the view would be a dependent of the adaptor insteadof the model. The communication model shown in Figure 7 uses an adaptor.If an adaptor is used, the pluggable information is encapsulated in the adaptor. Becauseboth the view and controller want to communicate with the model directly, neither is reallyappropriate for maintaining the pluggable information. The role of the adaptor is to act as if itwere themodel, while adapting the protocol sent by the view and controller to that understoodby the real model. The adaptor encapsulates the pluggable information.Adaptors have two distinct advantages over pluggable views. First, the presence of theadaptor can be ignored when understanding the roles of the model, view and controller. Themechanism for making the view-controller pair pluggable can also be ignored, simplifying the15

Figure 7: The pluggable MVC model with an adaptorMVC paradigm.Second, because adaptors act just like the models they represent, the concept of adaptorscan be applied to any existing view-controller pair without rewriting the pair. Pluggable viewsrequire at least the creation of two subclasses, which usually involves a great deal of overridingof methods to use the pluggable selectors rather than accessing the model directly.

16

5 A Dice with a Pluggable ViewA pluggable implementation of a dice can be constructed by replacing the explicit messages#value and #roll in the classes DiceView and DiceController by messages which use selectorsstored in instances of DiceView. The selectors are stored in two new instance variables, ac-tionSelector and stateSelector. That is, the non-adaptor form of pluggable views shown inFigure 6 is used.Open the dice with pluggable view by:PluggableDiceView openOn: (Dice new) action: #roll state: #value.To make things clear, we call the updated DiceView and DiceController as PluggableDice-View and PluggableDiceController respectively. These new classes are the same as DiceViewand DiceController respectively except for the changes described below.5.1 Changes in PluggableDiceViewTwo new instance variables actionSelector and stateSelector are added. Also the instancecreation messages and the initialization message must be changed to account for these twonew instance variables.View subclass: #PluggableDiceViewinstanceVariableNames: 'images actionSelector stateSelector 'classVariableNames: ''poolDictionaries: ''category: 'Example-Dice'5.1.1 Changes in Class Messages for PluggableDiceViewCategory 'instance creation'The messages for instance creation are changed. Two more arguments of action selector andstate selector are passed.model: aModel action: actionMsg state: stateMsg"Create a PluggableDiceView instance."^self new model: aModel action: actionMsg state: stateMsg.openOn: aDice action: actionMsg state: stateMsg"Create an instance of the receiver in a ScheduledWindow"| diceView window |window := ScheduledWindowmodel: aDicelabel: 'Dice'minimumSize: 100@120.window maximumSize: 100@120.diceView := self model: aDice action: actionMsg state: stateMsg.window component: diceView.window open 17

5.1.2 Changes in Instance Messages for PluggableDiceViewCategory 'instance-release'Two more arguments are passed to this message. It initializes the instance variables actionS-elector and stateSelector.model: aDice action: actionMsg state: stateMsg"Initialize the instance variables of receiver."self model: aDice.images := Dictionary new.images at: 1 put: (ImageReader fromFile: 'one.bmp' asFilename) image.images at: 2 put: (ImageReader fromFile: 'two.bmp' asFilename) image.images at: 3 put: (ImageReader fromFile: 'three.bmp' asFilename) image.images at: 4 put: (ImageReader fromFile: 'four.bmp' asFilename) image.images at: 5 put: (ImageReader fromFile: 'five.bmp' asFilename) image.images at: 6 put: (ImageReader fromFile: 'six.bmp' asFilename) image.actionSelector := actionMsg.stateSelector := stateMsg.Category 'displaying'The displaying message must be modi�ed to use the message selector stored in the instancevariable, stateSelector.displayOn: aGraphicsContext"Display an image."| currentValue |currentValue := model perform: stateSelector.(images at: currentValue) displayOn: aGraphicsContext.Category 'updating state'A message must be added which the controller can use it to relay the fact that the modelshould change its state.changeState"Ask model to change state."model perform: actionSelector.Category 'controller access'The default controller class in pluggable view is changed to PluggableDiceController.defaultControllerClass"Answer the class of the controller associated with me."^PluggableDiceController 18

5.2 Changes in PluggableDiceControllerCategory 'control defaults'Finally, the method in class DiceController for #controlActivity must be modi�ed to use thenew message #changeState in PluggableDiceView to initiate a state change instead of informingthe model directly.controlActivity"If my <select> button is pressed,tell pluggable view to inform model changing state,then wait for the button to be released"self sensor redButtonPressedifTrue: [view changeState.self sensor waitNoButton].^super controlActivity

19

6 A Double-DiceTo illustrate how pluggable views are used, we present a double-dice which uses two view-controller pairs which are dice and a single model. The double-dice contains two independentdice view placed in a ScheduledWindow. There are totally thirty six (6x6) di�erent states.
Figure 8: An instance of a double-diceFollowing convention, the model and view classes are named: DoubleDice and DoubleDice-View. However, there is no DoubleDiceController since the class Controller is su�cient. Notethat although instances of the class DoubleDice are being used as models, instances of otherclasses could be used as well since the DoubleDiceView is pluggable. The only real require-ment of the model is that it can represent thirty six distinct states.With the use of pluggable views, the double-dice can be operated in two modes. The twodice can roll independently or roll at the same time.To open a double-dice which the two dice roll independently:DoubleDiceViewopenOn: (DoubleDice new)action: #(#leftRoll #rightRoll)state: #(#leftValue #rightValue).To open the double-dice which the two dice roll at the same time:DoubleDiceViewopenOn: (DoubleDice new)action: #(#bothRoll #bothRoll)state: #(#leftValue #rightValue).6.1 Class DoubleDiceThe class DoubleDice is a subclass of the class Model. It has two instance variables, leftValueand rightValue, which store the value of left and right dice respectively.Model subclass: #DoubleDiceinstanceVariableNames: 'leftValue rightValue 'classVariableNames: ''poolDictionaries: ''category: 'Example-Dice'6.1.1 Class Messages for DoubleDiceThere is a single class message, #new, which creates a new instance and initializes its state.20

Category 'instance creation'new "Answer with an initialized instance of the receiver"^super new initialize6.1.2 Instance Messages for DoubleDiceThere are three categories of instance messages: 'initialize-release', 'accessing' and 'modi-fying', where the �rst category contains one message and the other two categories containtwo messages each. The messages are: #initialize, #leftValue, #rightValue, #leftRoll and#rightRoll.Category 'initialize-release'The �rst message initializes the values of two dice to be 1.initialize"Initialize the variables of the receiver"leftValue := 1.rightValue := 1.Category 'accessing'This category contains two messages which answer the value of the left and right dice respec-tively.leftValue"Answer with the current value of the left dice held by the receiver"^leftValuerightValue"Answer with the current value of the right dice held by the receiver"^rightValueCategory 'modifying'This category contains three messages which roll the left, right, and both dice. The left orright dice will then have a new value between 1 to 6. Its dependents are asked to update.leftRoll"Set my first value to be a random integer between 1 and 6"| rand |rand := Random new.leftValue := (rand next * 6 + 1) truncated.self changed 21

rightRoll"Set my second value to be a random integer between 1 and 6"| rand |rand := Random new.rightValue := (rand next * 6 + 1) truncated.self changedbothRoll"Set the two values to be a random integer between 1 and 6"| rand |rand := Random new.leftValue := (rand next * 6 + 1) truncated.rightValue := (rand next * 6 + 1) truncated.self changed6.2 Class DoubleDiceViewThe class DoubleDiceView is a subclass of the class View with no new instance variables.View subclass: #DoubleDiceViewinstanceVariableNames: ''classVariableNames: ''poolDictionaries: ''category: 'Example-Dice'6.2.1 Class Messages for DoubleDiceViewThere is only one class message for DoubleDiceView. It is an instance creation message. Itcreates the two dice-views and put them in the ScheduledWindow.Category 'instance creation'openOn: aDice action: actionMsgArray state: stateMsgArray"Create an instance of the receiver in a ScheduledWindow"| window leftView leftWrapper rightView rightWrapper composite |leftView := PluggableDiceViewmodel: aDiceaction: (actionMsgArray at: 1)state: (stateMsgArray at: 1).leftWrapper := BorderedWrapper on: leftView in: (0@0 corner: 0.5@1.0).rightView := PluggableDiceViewmodel: aDiceaction: (actionMsgArray at: 2)state: (stateMsgArray at: 2).rightWrapper := BorderedWrapper on: rightView in: (0.5@0 corner: 1@1).composite := CompositePart new. 22

composite addWrapper: leftWrapper.composite addWrapper: rightWrapper.window := ScheduledWindowmodel: aDicelabel: 'Dice'minimumSize: 230@120.window maximumSize: 230@120.window component: composite.window openIn DoubleDiceView, there are two dice-views in the same window. Both of them arePluggableDiceView. In order to place them in the same window, we need to add them inwrappers which will become the component of a CompositePart. This CompositePart isembedded in the ScheduledWindow as a component.

23

7 ConclusionWe have described the Smalltalk Model-View-Controller (MVC) user interface paradigm us-ing three examples. The �rst example is a simple but complete implementation of a dice. Itillustrates the basic communication pattern of the MVC paradigm with non-pluggable views.The second example re-implements the dice using a pluggable view. It illustrates how thecommunication pattern changes when pluggable views are used.The third example consists of a double-dice which uses the pluggable view implementationof the dice. It shows how pluggable views can be used to associate multiple view-controllerpairs with di�erent aspects of a common model.In addition to the three examples, we have discussed the rationale for pluggable views, thereasons why they are important and two di�erent communication patterns for implementingthem. It is our belief that all views should be pluggable so that they may be easily re-used inmultiple applications.

24

References[Goldberg, Robson] Goldberg, A. and D. Robson, Smalltalk-80: The Language and its Imple-mentation, Addison-Wesley, Reading 1983.[Goldberg] Goldberg, A., Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, Reading 1984.[Schneiderman] Schneiderman, B., Designing the User Interface, Addison-Wesley, Reading1987.[Szafron] Szafron, D., J. Adria and B. Wilkerson, GUIDE: An Environment for SoftwareDesign, INFOR, January 1985, pp 31-52.[Trevor] Trevor Hopkins and Bernard Horan, Smalltalk: an introduction to application devel-opment using VisualWorks, Prentice Hall 1995.

25

