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3 Document Transformations
� XSLT 1.0 (W3C Rec. 11/1999; 

XSLT 2.0 Candidate Rec. 11/05)
– A language for transforming XML documents
– initial main purpose to support XSL formatting
– currently mainly (?) used as an independent 
transformation language (esp. XML → HTML)

� Our goal: to understand the basic model and 
central features of XSLT
– Overview and an example
– Data model  and processing model
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XSLT: Overview
� XSLT uses XML syntax for expressing 

transformations
– of a document source tree into a result tree

» result and source are separate trees
– by template rules

� Each template rule has
– a pattern (matched against nodes of the source tree)
– a template as a body

» instantiated to create fragments of the result tree
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Style Sheets and Template Rules
� An xsl:stylesheet (or xsl:transform) 

consists of template rules:
<xsl:template match="Pattern">

Template <!-- NB: well-formed! -->
</xsl:template>
� Rule applied to nodes of the source tree matched 

by the Pattern
– expressed using XPath (XML Path Language)

� Template consists of
» literal result tree fragments (elements, text), and 
» XSLT instructions for creating further result tree fragments 

conventional XSLT
namespace prefix
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XPath in a Nutshell
� XPath 1.0 W3C Rec. 11/99 (2.0 Cand.Rec. 11/05)
– a compact non-XML syntax for addressing parts of 

XML documents (as node-sets)
– used also in other W3C languages

» Specs for hyperlinks in XML: 
XLink (Rec. '01) and XPointer (Rec. '03)

» XQuery (WD, Sept '05; extends XPath 2.0)
– also typical operations on strings, numbers and truth 

values
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An XSL transformation example
� Transform below document to HTML:
<?xml-stylesheet type="text/xsl" href="walsh.xsl" ?>
<!-- Modified from an example by Norman Walsh --> 
<doc><title>My Document</title>

<para>This is a <em>short</em> document.</para>
<para>It only exists to <em>demonstrate a 

<em>simple</em> XML document</em>.</para>
<figure><title>My Figure</title> 

<graphic fileref="myfig.jpg"/></figure>
</doc>
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Result (edited for readability)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 

Transitional//EN">
<HTML><HEAD><TITLE>A Document</TITLE></HEAD>
<BODY>  <H1>My Document</H1>
<P>This is a <I>short</I> document.</P>
<P>It only exists to <I>demonstrate a <B>simple</B> XML 
document</I>.</P>
<DIV>

<B>Figure 1. </B>  <BR>
<IMG src="myfig.jpg"><B>My Figure</B>

</DIV>
</BODY>
</HTML>
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Example style sheet begins
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/"> <!-- rule for root -->
<HTML><HEAD><TITLE>A Document</TITLE></HEAD> 
<BODY>
<!-- process root's children here: -->
<xsl:apply-templates /> 

</BODY>
</HTML>

</xsl:template>
<xsl:template match="doc/title"> 

<H1><xsl:apply-templates /></H1>
</xsl:template>
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Example (paras and emphs)

<xsl:template match="para"> 
<P><xsl:apply-templates /></P>

</xsl:template> 
<xsl:template match="em"> 

<I><xsl:apply-templates /></I>
</xsl:template> 
<xsl:template match="em/em"> 

<B><xsl:apply-templates /></B>
</xsl:template>

XPT 2006 Overview of XSLT 10

Example (figures)
<xsl:template match="figure"> 

<!-- Insert a bold caption of form 'Figure Num. '
by counting all figures in the document: -->

<DIV><B>Figure <xsl:number level="any" 
count="figure"/>. </B> 

<BR /> 
<!-- Process the children of figure, -->
<!-- the 'graphic' child first: -->
<xsl:apply-templates select="graphic" /> 
<!-- then the 'title' child: -->
<xsl:apply-templates select="title" /> 

</DIV>
</xsl:template> 
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Example (end of style sheet)

<xsl:template match="graphic"> 
<IMG src="{@fileref}" />
<!-- Assign the value of attribute 
'fileref' to attribute 'src' -->

</xsl:template>

<xsl:template match="figure/title"> 
<B> <xsl:apply-templates /> </B>

</xsl:template>
</xsl:stylesheet>
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Result (edited for readability)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 

Transitional//EN">
<HTML><HEAD><TITLE>A Document</TITLE></HEAD>
<BODY>  <H1>My Document</H1>
<P>This is a <I>short</I> document.</P>
<P>It only exists to <I>demonstrate a <B>simple</B> XML 
document</I>.</P>
<DIV>

<B>Figure 1. </B>  <BR>
<IMG src="myfig.jpg"><B>My Figure</B>

</DIV>
</BODY>
</HTML>
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What use of XSL(T)?
� XSL can be used in different ways

– for offline document formatting
» produce, say, PDF from  XML by an  XSL style 
sheet (using XSLT + XSL formatting objects)

– for offline document manipulation
» transform XML into other form (XML/HTML/text)  
using XSLT

– for online document delivery
» on a Web server
» in a Web browser (if the browser supports)
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XSLT in online document delivery

� XSLT in a browser
– defines rendering of XML documents
– supported by MS IE, and Netscape/Mozilla (7.0/1.7)

» transformation of  XML to HTML on the fly in browser
» NB: Microsoft's implementation used to differ from XSLT 1.0

� XSLT on a Web server
– an HTTP request served by transforming XML on the 
fly to HTML (or other format) on the server

XPT 2006 Overview of XSLT 15

Main Aspects of XSLT
� Data model
– How is document data viewed in XSLT?

� Selection mechanism
– How are document parts selected for processing?

� Matching
– How are the template rules selected?

� Processing model
– How does the XSLT execution proceed?
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Data Model  of XSLT and XPath
� Documents are viewed as trees

made of seven types of nodes:
– root (additional parent of document element)
– element nodes
– attribute nodes
– text nodes
– comments, processing instructions and 

namespaces
� NB: Entity references are expanded

−> no entity nodes
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XSLT/XPath document trees
� Defined in Sect. 5 of the XPath specification

� Element nodes have elements, text nodes, 
comments and processing instructions of their 
(direct) content as their children
– NB: attribute nodes are not children (but have a parent)
– the value of an element node is the concatenation of 
its text-node descendants
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XSLT/XPath Trees
� Similar to the DOM, with slight differences: 

– 7 vs 12 node types
– value of an element: its full textual content 
(In DOM: null)

– no names for text nodes, comment nodes, etc.
(In DOM: "#text", "#comment", etc.) 

� Document order of nodes:
– root node first, otherwise according to the order of the first 
character of the XML markup for each node

– > element node precedes it's attribute nodes, which precede 
any content nodes of  the element
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XSLT/XPath trees: Example

"Written by  the lecturer."

"Written by  the lecturer."

root
""

element
"article"

text
""
"Written by "

element
"fig"
""

text
""
" the lecturer."

attribute attribute
"caption" "file"
"The Lecturer" "pekka.jpg"

Legend: type

value
name

<article>Written by 
<fig 
file="pekka.jpg"  
caption="The 

Lecturer" /> 
the lecturer.
</article>

3rd

5th or 6th

1st

5th or 6th

7th

4th

2nd

null in DOM
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Main Aspects of XSLT
� Data model
� Selection mechanism

– How are document parts selected for 
processing?

– A: With XPath expressions
� Matching
� Processing model
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XPath Expressions
� Used for selecting source tree nodes, conditional 

processing, and generating new text content
– return node-sets, truth values, numbers or strings
– can select any parts of source tree (node-set) for 
processing, using …

� Location paths
– the most characteristic of XPath expressions
– evaluated with respect to a context node

» often the current node matched by the template pattern
– result: set of nodes selected by the location path
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Location paths
� Consist of location steps separated by '/'
– each step produces a set of nodes
– steps evaluated left-to-right, 
each node in turn as context node
» path begins with ‘/’ −> root is the first context node

� Complete form of a  location step: 
AxisName:: NodeTest ([PredicateExpr])*

– axis specifies the tree relationship between the context 
node and the selected nodes 

– node test restricts the type and and name of nodes
– filtered further by 0 or more predicates
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Location steps: Axes
� In total 13 axes (~ directions in tree)
– for staying at the context node:

» self
– for going downwards:

» child, descendant, descendant-or-self
– for going upwards:

» parent, ancestor, ancestor-or-self
– for moving towards start/end of the document:

» preceding-sibling, following-sibling, 
preceding, following

– “Special” axes
» attribute, namespace
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XPath Axes and Their Orientation

� Ordinary axes oriented away from context node
(attribute and namespace axes are unordered)
– the position() for the closest node = 1
– for the most remote node, position() = last()

1

Context
node:

� The simplest axis, self::
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XPath Axes and Their Orientation

� parent:: (exists for every node except the root)
1

Context node:
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XPath Axes and Their Orientation

� ancestor:: 2

1

� ancestor-or-self::
3

2

1
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XPath Axes and Their Orientation

� child::

431 2

Context
node:
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XPath Axes and Their Orientation

� descendant::
871 4

2 3 65 9

� descendant-or-self:: 1

982 5

3 4 76 10
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XPath Axes and Their Orientation

� preceding-sibling::
2 1

� following-sibling::

21
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XPath Axes and Their Orientation

� following::

21

3

4

5

� preceding::
3

2 1
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Location paths: Node tests
� Node tests (slightly simplified)
– Name: any element node with name Name
(on an attribute axis, any attribute node with name Name)

– *: any element (any attribute node on an attribute axis)
– text(): any text node

» comment(): any comment node
» processing-instruction(): any processing instruction

– node(): any node of any type
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Location paths: Abbreviations
� Abbreviations in location steps

– 'child::' can be omitted
– 'attribute::' can be shortened to '@'
– 'self::node()' can be shortened to '.' (period)
– 'parent::node()' can be shortened to '..'
– Predicate '[position()=n]' for testing occurrence 
position n can be shortened to '[n]'

– '/descendant-or-self::node()/' shortened to '//'

−> Syntax resembles slightly Linux/Unix file path names
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Semantics of Location Paths (example)

{2, 5, 7}

A

B

context node

C"txt"A B

BC5

8
43

2

1

6

7

*/node()/parent::B[child::A]
{3, 4, 6, 8} {2, 5, 7}

final value: {2}

value after 
each step:
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Location path examples (1)
� chap children of current node:

./chap (or simply chap, or
./child::*[name()='chap'])

� The document element 
(child element of root node): /*
� Elements chapter anywhere (below the root): 

//chapter ( .//chapter −> anywhere below 
the context node)

� All chapters of type A or B: 
//chapter[@type='A' or @type='B']

� the previous chapter sibling: 
preceding-sibling::chapter[1]
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Location path examples (2)
� All child elements having an attribute type: 

*[@type]
NB: Node sets as truth values: empty - false; non-empty - true

� All child elements of any author child:
author/*

� sections whose type attribute equals style 
attribute of the document element:

//sect[@type = /*/@style]
� First author child, and previous to the last: 

author[1], author[last()-1]
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Main Aspects of XSLT
� Data model
� Selection mechanism
� Matching

– How are the rules selected?
– A: With Patterns
� Processing model
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XSLT Patterns
� Main use in match attributes of template rules:

<xsl:template match="Pattern">
� also used for numbering (Which parts are counted?)

� Restricted location path expressions:
– steps with child and attribute axes only, 

separated by '//' or '/'
» but arbitrary predicates in [Expr]allowed

– may begin with id('IdVal')
(for selecting element nodes by ID attribute values)

– alternative patterns  separated by '|' (~ node-set union)
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XSLT Patterns: Semantics
� A location path pattern P is of form 

Step1⊕ Step2 ⊕ … Stepn-1 ⊕ Stepn ,where each separator ⊕ is either `/´ or `//´
– may also begin with ‘/’; Pattern ‘/’ matches only the root

� Else P matches a node vn iff there are nodes vn,..., v1 such that each vi satisfies the node test and possible predicates of Stepi , and which form a path towards the root:
– If P begins with a single ‘/’, node v1 must be child of the root
– in case of Stepi-1/Stepi  node vi-1 is the parent of vi
– in case of Stepi-1//Stepi  node vi-1 is an ancestor of vi
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XSLT Patterns: Examples
� match="sect-head | section/head"
– matches any element with name sect-head, and any
head elements directly below a section

� Pattern
/appendix//ulist/item[1]

matches the first item element in a ulist element which 
is contained in an appendix, which is the document 
element
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Main Aspects of XSLT
� Data model
� Selection mechanism
� Matching
� Processing model

– How does the XSLT execution proceed?
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XSLT Processing Model
0. Parse the document into a source tree
1. Construct the result tree by applying 

template rules to the source tree
2. Serialize the result tree 

(as XML, HTML or text)
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Transformation Process

Output Process

XML

Text

HTML

Style
Sheet

Source
Document

Source Tree
Result Tree

Overview of XSLT Transformation
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Result Tree Construction (approximately)

ResultTree:= ApplTempls([root of the source tree]);

proc ApplTempls(CNL: list of Nodes) returns list of Nodes:
ResList:= emptyNodeList();
for each Node cn in CNL do  // current node in current node list
Find matching template rule (of highest priority; See next)
Instantiate its template T in context (cn, CNL), and add to ResList; 
Replace each <apply-templates select="E"/> in T by 
ApplTempls(L), where L = value of expr E in context (cn, CNL);

end for;
return ResList;
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Selecting one of matching rules
� Priority of a rule can be specified explicitly: 

<xsl:template priority="2.0"…
� Default priorities based on the match pattern:
– 0 for simple name tests (like para, @href)
– negative for less specific patterns 
e.g.,   *, @*, node()

– 0.5 for more complex patterns
� Multiple matching rules with the same maximum 

priority is an error - Processor may (quietly!) 
choose the last one of them 
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Application of template rules
� Without a select attribute (~ select="node()")

<xsl:apply-templates />
processes all children of current node
– > “default traversal”: top-down 

� Selected nodes are processed in document order 
(if not sorted with xsl:sort)
� Built-in rules support the top-down traversal if no 
matching have been given rules 
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Built-In Default Rules

� For the root and element nodes:
<xsl:template match="/ | *">

<xsl:apply-templates />
</xsl:template>

� For text and attribute nodes:
<xsl:template match="text() | @*">
<!-- Insert the string value 

of current node: -->
<xsl:value-of select="." />

</xsl:template>
� Low priority −> can be overridden
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A (Tricky) Processing Example 

� Consider transforming document
<A>
<B>b1</B><C>cc<B>b2</B></C><D>dd</D><B>b3</B>
</A>

with the below rules:
<xsl:template match="/"> <!-- Rule 1 -->

<R><xsl:apply-templates select="//C" /></R>
</xsl:template>
<xsl:template match="C"> <!-- Rule 2 -->

<NewC>New: <xsl:apply-templates select="../B" />
<xsl:apply-templates /> 

</NewC>
</xsl:template>
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Processing example (2)
� The result
<R><NewC>New: b1b3ccb2</NewC></R>

is obtained as follows: 
1. Rule 1 matches the root node −> Element node R is added 
to the result; Instruction <xsl:apply-templates 
select="//C" /> selects the (only) C element for 
processing (which will produce the contents of node R). 

2. Rule 2 with pattern "C" creates into result tree a NewC
element node with text node "New: " as its first child.
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Processing example (3)
3. Instruction <xsl:apply-templates select="../B"/>
selects element B siblings of current node (C). The built-in 
element rule applies to these, and the built-in text rule to 
their children. 
Result: text nodes "b1" and "b3" become the next 
children of NewC.

4. Instruction <xsl:apply-templates /> in the context of 
element node C selects its children, "cc" and 
<B>b2</B>, for processing. The built-in text rule inserts 
value "cc" to the result tree, and the B element node 
becomes "b2" in the result (similarly to step 3).
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Processing example (4)

A

B B

B

C D

b1

Source Result

cc

b2

dd

R

NewC

New: b3

1. 2.
3.

4.

b3b1 cc b2
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Is it Really So Tricky?
� Fortunately seldom
– but a computer scientist  wants to understand the 
working of a model

� XSLT is a high-level declarative language for 
describing transformations
– Normally suffices to give simple rules for different 
cases, like
<xsl:template match="para"> 

<P><xsl:apply-templates /></P>
</xsl:template> 


