
XPT 2006 Overview of XSLT 1

3 Document Transformations
� XSLT 1.0 (W3C Rec. 11/1999;

XSLT 2.0 Candidate Rec. 11/05)
– A language for transforming XML documents
– initial main purpose to support XSL formatting
– currently mainly (?) used as an independent
transformation language (esp. XML → HTML)

� Our goal: to understand the basic model and
central features of XSLT
– Overview and an example
– Data model and processing model

XPT 2006 Overview of XSLT 2

XSLT: Overview
� XSLT uses XML syntax for expressing

transformations
– of a document source tree into a result tree

» result and source are separate trees
– by template rules

� Each template rule has
– a pattern (matched against nodes of the source tree)
– a template as a body

» instantiated to create fragments of the result tree

XPT 2006 Overview of XSLT 3

Transformation Process

Output Process

XML

Text

HTML

Style
Sheet

Source
Document

Source Tree
Result Tree

Overview of XSLT Transformation

XPT 2006 Overview of XSLT 4

Style Sheets and Template Rules
� An xsl:stylesheet (or xsl:transform)

consists of template rules:
<xsl:template match="Pattern">

Template <!-- NB: well-formed! -->
</xsl:template>
� Rule applied to nodes of the source tree matched

by the Pattern
– expressed using XPath (XML Path Language)

� Template consists of
» literal result tree fragments (elements, text), and
» XSLT instructions for creating further result tree fragments

conventional XSLT
namespace prefix

XPT 2006 Overview of XSLT 5

XPath in a Nutshell
� XPath 1.0 W3C Rec. 11/99 (2.0 Cand.Rec. 11/05)
– a compact non-XML syntax for addressing parts of

XML documents (as node-sets)
– used also in other W3C languages

» Specs for hyperlinks in XML:
XLink (Rec. '01) and XPointer (Rec. '03)

» XQuery (WD, Sept '05; extends XPath 2.0)
– also typical operations on strings, numbers and truth

values

XPT 2006 Overview of XSLT 6

An XSL transformation example
� Transform below document to HTML:
<?xml-stylesheet type="text/xsl" href="walsh.xsl" ?>
<!-- Modified from an example by Norman Walsh -->
<doc><title>My Document</title>

<para>This is a short document.</para>
<para>It only exists to demonstrate a

simple XML document.</para>
<figure><title>My Figure</title>

<graphic fileref="myfig.jpg"/></figure>
</doc>

XPT 2006 Overview of XSLT 7

Result (edited for readability)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">
<HTML><HEAD><TITLE>A Document</TITLE></HEAD>
<BODY> <H1>My Document</H1>
<P>This is a <I>short</I> document.</P>
<P>It only exists to <I>demonstrate a simple XML
document</I>.</P>
<DIV>

Figure 1.

My Figure

</DIV>
</BODY>
</HTML>

XPT 2006 Overview of XSLT 8

Example style sheet begins
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/"> <!-- rule for root -->
<HTML><HEAD><TITLE>A Document</TITLE></HEAD>
<BODY>
<!-- process root's children here: -->
<xsl:apply-templates />

</BODY>
</HTML>

</xsl:template>
<xsl:template match="doc/title">

<H1><xsl:apply-templates /></H1>
</xsl:template>

XPT 2006 Overview of XSLT 9

Example (paras and emphs)

<xsl:template match="para">
<P><xsl:apply-templates /></P>

</xsl:template>
<xsl:template match="em">

<I><xsl:apply-templates /></I>
</xsl:template>
<xsl:template match="em/em">

<xsl:apply-templates />
</xsl:template>

XPT 2006 Overview of XSLT 10

Example (figures)
<xsl:template match="figure">

<!-- Insert a bold caption of form 'Figure Num. '
by counting all figures in the document: -->

<DIV>Figure <xsl:number level="any"
count="figure"/>.

<!-- Process the children of figure, -->
<!-- the 'graphic' child first: -->
<xsl:apply-templates select="graphic" />
<!-- then the 'title' child: -->
<xsl:apply-templates select="title" />

</DIV>
</xsl:template>

XPT 2006 Overview of XSLT 11

Example (end of style sheet)

<xsl:template match="graphic">

<!-- Assign the value of attribute
'fileref' to attribute 'src' -->

</xsl:template>

<xsl:template match="figure/title">
 <xsl:apply-templates />

</xsl:template>
</xsl:stylesheet>

XPT 2006 Overview of XSLT 12

Result (edited for readability)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">
<HTML><HEAD><TITLE>A Document</TITLE></HEAD>
<BODY> <H1>My Document</H1>
<P>This is a <I>short</I> document.</P>
<P>It only exists to <I>demonstrate a simple XML
document</I>.</P>
<DIV>

Figure 1.

My Figure

</DIV>
</BODY>
</HTML>

XPT 2006 Overview of XSLT 13

What use of XSL(T)?
� XSL can be used in different ways

– for offline document formatting
» produce, say, PDF from XML by an XSL style
sheet (using XSLT + XSL formatting objects)

– for offline document manipulation
» transform XML into other form (XML/HTML/text)
using XSLT

– for online document delivery
» on a Web server
» in a Web browser (if the browser supports)

XPT 2006 Overview of XSLT 14

XSLT in online document delivery

� XSLT in a browser
– defines rendering of XML documents
– supported by MS IE, and Netscape/Mozilla (7.0/1.7)

» transformation of XML to HTML on the fly in browser
» NB: Microsoft's implementation used to differ from XSLT 1.0

� XSLT on a Web server
– an HTTP request served by transforming XML on the
fly to HTML (or other format) on the server

XPT 2006 Overview of XSLT 15

Main Aspects of XSLT
� Data model
– How is document data viewed in XSLT?

� Selection mechanism
– How are document parts selected for processing?

� Matching
– How are the template rules selected?

� Processing model
– How does the XSLT execution proceed?

XPT 2006 Overview of XSLT 16

Data Model of XSLT and XPath
� Documents are viewed as trees

made of seven types of nodes:
– root (additional parent of document element)
– element nodes
– attribute nodes
– text nodes
– comments, processing instructions and

namespaces
� NB: Entity references are expanded

−> no entity nodes

XPT 2006 Overview of XSLT 17

XSLT/XPath document trees
� Defined in Sect. 5 of the XPath specification

� Element nodes have elements, text nodes,
comments and processing instructions of their
(direct) content as their children
– NB: attribute nodes are not children (but have a parent)
– the value of an element node is the concatenation of
its text-node descendants

XPT 2006 Overview of XSLT 18

XSLT/XPath Trees
� Similar to the DOM, with slight differences:

– 7 vs 12 node types
– value of an element: its full textual content
(In DOM: null)

– no names for text nodes, comment nodes, etc.
(In DOM: "#text", "#comment", etc.)

� Document order of nodes:
– root node first, otherwise according to the order of the first
character of the XML markup for each node

– > element node precedes it's attribute nodes, which precede
any content nodes of the element

XPT 2006 Overview of XSLT 19

XSLT/XPath trees: Example

"Written by the lecturer."

"Written by the lecturer."

root
""

element
"article"

text
""
"Written by "

element
"fig"
""

text
""
" the lecturer."

attribute attribute
"caption" "file"
"The Lecturer" "pekka.jpg"

Legend: type

value
name

<article>Written by
<fig
file="pekka.jpg"
caption="The

Lecturer" />
the lecturer.
</article>

3rd

5th or 6th

1st

5th or 6th

7th

4th

2nd

null in DOM

XPT 2006 Overview of XSLT 20

Main Aspects of XSLT
� Data model
� Selection mechanism

– How are document parts selected for
processing?

– A: With XPath expressions
� Matching
� Processing model

XPT 2006 Overview of XSLT 21

XPath Expressions
� Used for selecting source tree nodes, conditional

processing, and generating new text content
– return node-sets, truth values, numbers or strings
– can select any parts of source tree (node-set) for
processing, using …

� Location paths
– the most characteristic of XPath expressions
– evaluated with respect to a context node

» often the current node matched by the template pattern
– result: set of nodes selected by the location path

XPT 2006 Overview of XSLT 22

Location paths
� Consist of location steps separated by '/'
– each step produces a set of nodes
– steps evaluated left-to-right,
each node in turn as context node
» path begins with ‘/’ −> root is the first context node

� Complete form of a location step:
AxisName:: NodeTest ([PredicateExpr])*

– axis specifies the tree relationship between the context
node and the selected nodes

– node test restricts the type and and name of nodes
– filtered further by 0 or more predicates

XPT 2006 Overview of XSLT 23

Location steps: Axes
� In total 13 axes (~ directions in tree)
– for staying at the context node:

» self
– for going downwards:

» child, descendant, descendant-or-self
– for going upwards:

» parent, ancestor, ancestor-or-self
– for moving towards start/end of the document:

» preceding-sibling, following-sibling,
preceding, following

– “Special” axes
» attribute, namespace

XPT 2006 Overview of XSLT 24

XPath Axes and Their Orientation

� Ordinary axes oriented away from context node
(attribute and namespace axes are unordered)
– the position() for the closest node = 1
– for the most remote node, position() = last()

1

Context
node:

� The simplest axis, self::

XPT 2006 Overview of XSLT 25

XPath Axes and Their Orientation

� parent:: (exists for every node except the root)
1

Context node:

XPT 2006 Overview of XSLT 26

XPath Axes and Their Orientation

� ancestor:: 2

1

� ancestor-or-self::
3

2

1

XPT 2006 Overview of XSLT 27

XPath Axes and Their Orientation

� child::

431 2

Context
node:

XPT 2006 Overview of XSLT 28

XPath Axes and Their Orientation

� descendant::
871 4

2 3 65 9

� descendant-or-self:: 1

982 5

3 4 76 10

XPT 2006 Overview of XSLT 29

XPath Axes and Their Orientation

� preceding-sibling::
2 1

� following-sibling::

21

XPT 2006 Overview of XSLT 30

XPath Axes and Their Orientation

� following::

21

3

4

5

� preceding::
3

2 1

XPT 2006 Overview of XSLT 31

Location paths: Node tests
� Node tests (slightly simplified)
– Name: any element node with name Name
(on an attribute axis, any attribute node with name Name)

– *: any element (any attribute node on an attribute axis)
– text(): any text node

» comment(): any comment node
» processing-instruction(): any processing instruction

– node(): any node of any type

XPT 2006 Overview of XSLT 32

Location paths: Abbreviations
� Abbreviations in location steps

– 'child::' can be omitted
– 'attribute::' can be shortened to '@'
– 'self::node()' can be shortened to '.' (period)
– 'parent::node()' can be shortened to '..'
– Predicate '[position()=n]' for testing occurrence
position n can be shortened to '[n]'

– '/descendant-or-self::node()/' shortened to '//'

−> Syntax resembles slightly Linux/Unix file path names

XPT 2006 Overview of XSLT 33

Semantics of Location Paths (example)

{2, 5, 7}

A

B

context node

C"txt"A B

BC5

8
43

2

1

6

7

*/node()/parent::B[child::A]
{3, 4, 6, 8} {2, 5, 7}

final value: {2}

value after
each step:

XPT 2006 Overview of XSLT 34

Location path examples (1)
� chap children of current node:

./chap (or simply chap, or
./child::*[name()='chap'])

� The document element
(child element of root node): /*
� Elements chapter anywhere (below the root):

//chapter (.//chapter −> anywhere below
the context node)

� All chapters of type A or B:
//chapter[@type='A' or @type='B']

� the previous chapter sibling:
preceding-sibling::chapter[1]

XPT 2006 Overview of XSLT 35

Location path examples (2)
� All child elements having an attribute type:

*[@type]
NB: Node sets as truth values: empty - false; non-empty - true

� All child elements of any author child:
author/*

� sections whose type attribute equals style
attribute of the document element:

//sect[@type = /*/@style]
� First author child, and previous to the last:

author[1], author[last()-1]

XPT 2006 Overview of XSLT 36

Main Aspects of XSLT
� Data model
� Selection mechanism
� Matching

– How are the rules selected?
– A: With Patterns
� Processing model

XPT 2006 Overview of XSLT 37

XSLT Patterns
� Main use in match attributes of template rules:

<xsl:template match="Pattern">
� also used for numbering (Which parts are counted?)

� Restricted location path expressions:
– steps with child and attribute axes only,

separated by '//' or '/'
» but arbitrary predicates in [Expr]allowed

– may begin with id('IdVal')
(for selecting element nodes by ID attribute values)

– alternative patterns separated by '|' (~ node-set union)

XPT 2006 Overview of XSLT 38

XSLT Patterns: Semantics
� A location path pattern P is of form

Step1⊕ Step2 ⊕ … Stepn-1 ⊕ Stepn ,where each separator ⊕ is either `/´ or `//´
– may also begin with ‘/’; Pattern ‘/’ matches only the root

� Else P matches a node vn iff there are nodes vn,..., v1 such that each vi satisfies the node test and possible predicates of Stepi , and which form a path towards the root:
– If P begins with a single ‘/’, node v1 must be child of the root
– in case of Stepi-1/Stepi node vi-1 is the parent of vi
– in case of Stepi-1//Stepi node vi-1 is an ancestor of vi

XPT 2006 Overview of XSLT 39

XSLT Patterns: Examples
� match="sect-head | section/head"
– matches any element with name sect-head, and any
head elements directly below a section

� Pattern
/appendix//ulist/item[1]

matches the first item element in a ulist element which
is contained in an appendix, which is the document
element

XPT 2006 Overview of XSLT 40

Main Aspects of XSLT
� Data model
� Selection mechanism
� Matching
� Processing model

– How does the XSLT execution proceed?

XPT 2006 Overview of XSLT 41

XSLT Processing Model
0. Parse the document into a source tree
1. Construct the result tree by applying

template rules to the source tree
2. Serialize the result tree

(as XML, HTML or text)

XPT 2006 Overview of XSLT 42

Transformation Process

Output Process

XML

Text

HTML

Style
Sheet

Source
Document

Source Tree
Result Tree

Overview of XSLT Transformation

XPT 2006 Overview of XSLT 43

Result Tree Construction (approximately)

ResultTree:= ApplTempls([root of the source tree]);

proc ApplTempls(CNL: list of Nodes) returns list of Nodes:
ResList:= emptyNodeList();
for each Node cn in CNL do // current node in current node list
Find matching template rule (of highest priority; See next)
Instantiate its template T in context (cn, CNL), and add to ResList;
Replace each <apply-templates select="E"/> in T by
ApplTempls(L), where L = value of expr E in context (cn, CNL);

end for;
return ResList;

XPT 2006 Overview of XSLT 44

Selecting one of matching rules
� Priority of a rule can be specified explicitly:

<xsl:template priority="2.0"…
� Default priorities based on the match pattern:
– 0 for simple name tests (like para, @href)
– negative for less specific patterns
e.g., *, @*, node()

– 0.5 for more complex patterns
� Multiple matching rules with the same maximum

priority is an error - Processor may (quietly!)
choose the last one of them

XPT 2006 Overview of XSLT 45

Application of template rules
� Without a select attribute (~ select="node()")

<xsl:apply-templates />
processes all children of current node
– > “default traversal”: top-down

� Selected nodes are processed in document order
(if not sorted with xsl:sort)
� Built-in rules support the top-down traversal if no
matching have been given rules

XPT 2006 Overview of XSLT 46

Built-In Default Rules

� For the root and element nodes:
<xsl:template match="/ | *">

<xsl:apply-templates />
</xsl:template>

� For text and attribute nodes:
<xsl:template match="text() | @*">
<!-- Insert the string value

of current node: -->
<xsl:value-of select="." />

</xsl:template>
� Low priority −> can be overridden

XPT 2006 Overview of XSLT 47

A (Tricky) Processing Example

� Consider transforming document
<A>
b1<C>ccb2</C><D>dd</D>b3

with the below rules:
<xsl:template match="/"> <!-- Rule 1 -->

<R><xsl:apply-templates select="//C" /></R>
</xsl:template>
<xsl:template match="C"> <!-- Rule 2 -->

<NewC>New: <xsl:apply-templates select="../B" />
<xsl:apply-templates />

</NewC>
</xsl:template>

XPT 2006 Overview of XSLT 48

Processing example (2)
� The result
<R><NewC>New: b1b3ccb2</NewC></R>

is obtained as follows:
1. Rule 1 matches the root node −> Element node R is added
to the result; Instruction <xsl:apply-templates
select="//C" /> selects the (only) C element for
processing (which will produce the contents of node R).

2. Rule 2 with pattern "C" creates into result tree a NewC
element node with text node "New: " as its first child.

XPT 2006 Overview of XSLT 49

Processing example (3)
3. Instruction <xsl:apply-templates select="../B"/>
selects element B siblings of current node (C). The built-in
element rule applies to these, and the built-in text rule to
their children.
Result: text nodes "b1" and "b3" become the next
children of NewC.

4. Instruction <xsl:apply-templates /> in the context of
element node C selects its children, "cc" and
b2, for processing. The built-in text rule inserts
value "cc" to the result tree, and the B element node
becomes "b2" in the result (similarly to step 3).

XPT 2006 Overview of XSLT 50

Processing example (4)

A

B B

B

C D

b1

Source Result

cc

b2

dd

R

NewC

New: b3

1. 2.
3.

4.

b3b1 cc b2

XPT 2006 Overview of XSLT 51

Is it Really So Tricky?
� Fortunately seldom
– but a computer scientist wants to understand the
working of a model

� XSLT is a high-level declarative language for
describing transformations
– Normally suffices to give simple rules for different
cases, like
<xsl:template match="para">

<P><xsl:apply-templates /></P>
</xsl:template>

