Next: Using gettextized software, Previous: Charset conversion in gettext, Up: Message catalogs with gettext
gettext
in GUI programsOne place where the gettext
functions, if used normally, have big
problems is within programs with graphical user interfaces (GUIs). The
problem is that many of the strings which have to be translated are very
short. They have to appear in pull-down menus which restricts the
length. But strings which are not containing entire sentences or at
least large fragments of a sentence may appear in more than one
situation in the program but might have different translations. This is
especially true for the one-word strings which are frequently used in
GUI programs.
As a consequence many people say that the gettext
approach is
wrong and instead catgets
should be used which indeed does not
have this problem. But there is a very simple and powerful method to
handle these kind of problems with the gettext
functions.
As as example consider the following fictional situation. A GUI program has a menu bar with the following entries:
+------------+------------+--------------------------------------+ | File | Printer | | +------------+------------+--------------------------------------+ | Open | | Select | | New | | Open | +----------+ | Connect | +----------+
To have the strings File
, Printer
, Open
,
New
, Select
, and Connect
translated there has to be
at some point in the code a call to a function of the gettext
family. But in two places the string passed into the function would be
Open
. The translations might not be the same and therefore we
are in the dilemma described above.
One solution to this problem is to artificially enlengthen the strings to make them unambiguous. But what would the program do if no translation is available? The enlengthened string is not what should be printed. So we should use a little bit modified version of the functions.
To enlengthen the strings a uniform method should be used. E.g., in the example above the strings could be chosen as
Menu|File Menu|Printer Menu|File|Open Menu|File|New Menu|Printer|Select Menu|Printer|Open Menu|Printer|Connect
Now all the strings are different and if now instead of gettext
the following little wrapper function is used, everything works just
fine:
char * sgettext (const char *msgid) { char *msgval = gettext (msgid); if (msgval == msgid) msgval = strrchr (msgid, '|') + 1; return msgval; }
What this little function does is to recognize the case when no
translation is available. This can be done very efficiently by a
pointer comparison since the return value is the input value. If there
is no translation we know that the input string is in the format we used
for the Menu entries and therefore contains a |
character. We
simply search for the last occurrence of this character and return a
pointer to the character following it. That's it!
If one now consistently uses the enlengthened string form and replaces
the gettext
calls with calls to sgettext
(this is normally
limited to very few places in the GUI implementation) then it is
possible to produce a program which can be internationalized.
With advanced compilers (such as GNU C) one can write the
sgettext
functions as an inline function or as a macro like this:
#define sgettext(msgid) \ ({ const char *__msgid = (msgid); \ char *__msgstr = gettext (__msgid); \ if (__msgval == __msgid) \ __msgval = strrchr (__msgid, '|') + 1; \ __msgval; })
The other gettext
functions (dgettext
, dcgettext
and the ngettext
equivalents) can and should have corresponding
functions as well which look almost identical, except for the parameters
and the call to the underlying function.
Now there is of course the question why such functions do not exist in the GNU C library? There are two parts of the answer to this question.
|
which is a quite good choice because it
resembles a notation frequently used in this context and it also is a
character not often used in message strings.
But what if the character is used in message strings. Or if the chose
character is not available in the character set on the machine one
compiles (e.g., |
is not required to exist for ISO C; this is
why the iso646.h file exists in ISO C programming environments).
There is only one more comment to make left. The wrapper function above require that the translations strings are not enlengthened themselves. This is only logical. There is no need to disambiguate the strings (since they are never used as keys for a search) and one also saves quite some memory and disk space by doing this.