
1

Petrozavodsk © Kimmo Raatikainen September 9, 2004

TCP TCP EnhancementsEnhancements

Kimmo Raatikainen

kimmo.raatikainen@cs.helsinki.fi

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 2

Lession OutlineLession Outline

• TCP options recommended for 2.5g3g
• Linux TCP implementation

2

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 3

RecommendationsRecommendations

• Appropriate Window Size (Sender & Receiver)
– Bandwidth Delay Product (BDP) of the end-to-end path

– the window scale option can be used to overcome the 64 kB
limitation.

• Increased Initial Window (Sender)
– the initial CWND (congestion window):

– min (4*MSS, max (2*MSS, 4380 bytes))

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 4

RecommendationsRecommendations

• Limited Transmit (Sender)
– RFC3042, Limited Transmit, extends Fast Retransmit/Fast

Recovery for TCP connections with small congestion
windows that are not likely to generate the three duplicate
acknowledgements required to trigger Fast Retransmit.

– TCP over 2.5G/3G implementations SHOULD implement
Limited Transmit

• IP MTU Larger than Default
• Path MTU Discovery (Sender & Intermediate Routers)

3

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 5

RecommendationsRecommendations

• Selective Acknowledgments (Sender & Receiver)
– TCP over 2.5G/3G SHOULD support SACK.

– In the absence of SACK feature, the TCP should use
NewReno RFC2582

• Explicit Congestion Notification (Sender, Receiver &
Intermediate Routers)
– TCP over 2.5G/3G SHOULD support ECN.

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 6

RecommendationsRecommendations

• TCP Timestamps Option (Sender & Receiver)
– TCP SHOULD use the TCP Timestamps option

• Disabling RFC1144 TCP/IP Header Compression
(Wireless Host)

4

Petrozavodsk © Kimmo Raatikainen September 9, 2004

TCP Enhancements in LinuxTCP Enhancements in Linux

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 8

OutlineOutline

• TCP details per IETF RFC’s
• Pitfalls in the specifications

• Linux TCP congestion control engine
• Features

• Discussion on performance
• Conclusions

5

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 9

TCP TCP BasicsBasics

• Slow start, congestion avoidance

• Receiver generates duplicate ACKs when data is missing

• Fast retransmit at third duplicate ACK

• Fast recovery to keep the ”ACK clock” in pace
– Standard Reno (RFC 2581) or NewReno (RFC 2582)

• Without SACK at most one retransmission in RTT

• Retransmission Timer adjusted smoothly based on measured
round-trip times
– SRTT + 4 * RTTVAR

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 10

SomeSome TCP TCP EnhancementsEnhancements

• SACK: allow several retransmissions in RTT
– acknowledge separate blocks of received data
– conservative: ”holes” are still outstanding

– Forward ACKs (FACK): ”holes” are considered lost

• D-SACK: report duplicate segments using SACK

• Timestamps: measure RTT for retransmissions

• Eifel: report unnecesary retransmissions using timestamps

• ECN: Explicit Congestion Notification

• Limited transmit: Avoid timeouts with small window

6

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 11

Discussion Discussion on on SpecificationsSpecifications

• RFC 2581 & RFC 2582: Congestion Control
– Cwnd is artificially increased on duplicate ACKs. It does not

correspond to real number of segments allowed to be in flight

• SACK congestion control draft
– Separate document that assumes SACK is in use
– Cwnd is not artificially increased

– We need to implement both? Nah…

• RFC 2988 does not work well with high-granularity timers
– No one sees this, because RTTs are generally below 1000ms

in flight = SND.NXT – SND.UNA

in flight = SND.NXT – SND.UNA – SACKed

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 12

RFC 2988: RTO RFC 2988: RTO CalculationCalculation

• RTO estimator decays
rapidly

• When measured RTT
drops, RTO goes up

• No one cares, because
– Min limit of 1000ms
– Coarse-grain timers

RTTVAR <- ¾ * RTTVAR + ¼ * | SRTT – MRTT |

SRTT <- 7/8 * SRTT + 1/8 * MRTT

RTO <- max(1000ms, SRTT + 4 * RTTVAR)

7

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 13

Linux Linux ApproachApproach

• Common congestion control with Reno, SACK, FACK

• sacked_out: # of segments surely left network
– SACK: number of SACKed segments
– Reno: number of duplicate ACKs

• lost_out: # of segments suspected lost
– SACK & Reno: first unacknowledged is considered lost
– FACK: holes between SACKs are considered lost

• scoreboard markings are updated accordingly

in flight = packets_out – sacked_out – lost_out + retrans_out

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 14

CA StatesCA States

• <reordering> is adjusted when unnecessary retransmission is
detected
– by default 3

• Window is increased in Open and Loss states
• Window is decreased in CWR and Recovery states

Open

Disorder Recovery

Loss

CWR dupacks

<reordering>
successive
dupacks

RTO

ECN

8

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 15

FeaturesFeatures

• Implements Explicit Congestion Notification (ECN)

• Congestion window is decreased steadily every second ACK in
CWR and Recovery states
– as in "rate-halving"

• Disorder state implements "Limited transmit" in practice

• Congestion window validation: If congestion window is not fully
used for a while, it is reduced

• Congestion control state is cached for future connections

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 16

Linux Linux Retransmission TimerRetransmission Timer

• Based on RFC 2988
• min. RTO = 200 ms
• min. RTTVAR = 50 ms

• RTTVAR reduced once
per round-trip time
– but increased instantly

• if RTT drops significantly,
RTTVAR weight is
reduced to 1/32

9

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 17

Congestion Window UndoingCongestion Window Undoing

• TCP sender can make false retransmits, e.g. due to
– false RTOs caused by unexpected delay
– dupacks caused by reordering in network

• False retransmits can be detected by using
– TCP timestamps: receiver echoes timestamp of original segment

after retransmission

– D-SACKs: a retransmitted segment is acknowledged in cumulative
ACK and in D-SACK

• After detecting false retransmission the sender sets
– cwnd <- max(cwnd, ssthresh * 2)

– ssthresh <- prior_ssthresh

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 18

UndoingUndoing on TCP on TCP TimestampsTimestamps

• A 3-second excessive
delay occurs on 256Kbps
link

• Triggers RTO, but ACKs
for original segments
arrive after RTO

• congestion window is
halved

• 65 KB acknowledged
between 5 and 10 s.

Without timestamps

10

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 19

UndoingUndoing on TCP on TCP TimestampsTimestamps

• Next ACK after RTO
echoes timestamp of
original segment

• Spurious timeout is
detected
– continue by transmitting

new data

– revert recent changes on
congestion control
parameters

• 75 KB acknowledged
between 5 and 10 s.

With timestamps

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 20

Undoing Can FailUndoing Can Fail

• Link outage: One window
of data segmenents and
ACKs are dropped

• ACKs echo latest
timestamp that updated
window

• Because ACKs are lost,
sender thinks new ACK
acknowledged earlier data
– Declares RTO spurious

11

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 21

Delayed AcknowledgementsDelayed Acknowledgements

• Delayed acknowledgements should be used by TCP
receiver

• Linux receiver measures interarrival times and adjusts
delay timer accordingly
– goal is to get an ACK out for every second segment

• Quick acknowledgements can be used at the
beginning of the connection
– causes the sender to increase the window faster

– No more than (advwin / 2) quick acknowledgements are
allowed to avoid silly windows

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 22

EffectEffect of of Quick AcksQuick Acks

• 256 Kbps , 200 ms delay
=> BW*delay more than 12
KB

• 4-5 round-trips until the
link is fully utilized

• every second segment is
acknowledged

• 50 KB transmitted in 2.5
seconds

Without quickacks

12

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 23

EffectEffect of of Quick AcksQuick Acks

• For the first 32 KB every
segment is acknowledged

• 50 KB transmitted in 2 seconds

With quickacks

Petrozavodsk, September 9, 2004 Kimmo Raatikainen 24

Concluding RemarksConcluding Remarks

• Implementation follows packet conservation in practice
– congestion window always holds a valid value

– counters try to estimate how many packets really are outstanding

• If the data structures tracking outstanding packets and supspected losses
are detected incorrect, undoing takes place

• Retransmission timer tries to avoid the pitfalls of the original algorithm

