
1

Petrozavodsk © Kimmo Raatikainen September 8, 2004

TCPTCP,, HTTP and Java overHTTP and Java over
Wireless LinksWireless Links

Kimmo Raatikainen

kimmo.raatikainen@cs.helsinki.fi

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 2

Lessions OutlineLessions Outline

• Problems in TCP Over Wireless
• Additional Problems Due to HTTP
• Java RMI Over Wireless

2

Petrozavodsk © Kimmo Raatikainen September 8, 2004

Problems in TCP Over Problems in TCP Over
WirelessWireless

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 4

Problems in TCP/IP over Wireless Problems in TCP/IP over Wireless
Link Link -- 11

• Overhead due to protocol headers
– TCP headers take c. 60 bytes

• High latency
– “extra” round trips should be avoided

• TCP slow start
– full bandwidth not utilized

• Timers will not work as intended
– If packet delivery times vary, then TCP timers get confused

3

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 5

Problems in TCP/IP over Wireless Problems in TCP/IP over Wireless
Link Link -- 22

• Inefficient recovery from packet losses
• Simultaneous TCP connection interfere with each other
• No support for disconnected state

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 6

Should Should TCP TCP be used be used –– facts facts
againstagainst

• It is generally recognized that TCP does not perform
well in the presence of significant levels of non-
congestion loss.
– TCP detractors argue that the wireless medium is one such

case, and that it is hard enough to fix TCP. They argue that it
is easier to start from scratch.

• TCP has too much header overhead.
• By the time the mechanisms are in place to fix it, TCP

is very heavy, and ill-suited for use by lightweight,
portable devices.

4

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 7

ShouldShould TCP TCP be usedbe used –– facts facts in in
favior favior –– 1/21/2

• It is preferable to continue using the same protocol that the rest
of the Internet uses for compatibility reasons.
– Anyextensions specific to the wireless link may be negotiated.

• Legacy mechanisms may be reused (for example three-way
handshake).

• Link-layer FEC and ARQ can reduce the BER such that any
losses TCP does see are, in fact, caused by congestion (or a
sustained interruption of link connectivity).
– Modern W-WAN technologies do this (CDPD, US-TDMA, CDMA,

GSM), thus improving TCP throughput.

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 8

ShouldShould TCP TCP be usedbe used –– factsfacts in in
faviorfavior –– 2/22/2

• Given TCP's wealth of research and experience,
alternative protocols are relatively immature, and the
full implications of their widespread deployment not
clearly understood.

• Handoffs among different technologies are made
possible by Mobile IP [RFC2002], but only if the same
protocols, namely TCP/IP, are used throughout.

5

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 9

What What to to ImproveImprove -- 1/21/2

• TCP: Current Mechanisms
– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery

• Connection Setup with T/TCP [RFC1397, RFC1644]

• Slow Start Proposals
– Larger Initial Window
– Growing the Window during Slow Start

• ACK Counting
• ACK-every-segment

– Terminating Slow Start

– Generating ACKs during Slow Start

• ACK Spacing

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 10

WhatWhat to to ImproveImprove -- 2/22/2

• Delayed Duplicate Acknowlegements

• Selective Acknowledgements [RFC2018]

• Detecting Corruption Loss
– Without Explicit Notification
– With Explicit Notifications

• Active Queue Management

• Scheduling Algorithms

• Split TCP and Performance-Enhancing Proxies (PEPs)

• Header Compression Alternatives

• Payload Compression

• TCP Control Block Interdependence

6

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 11

Future ReadingsFuture Readings

• RFC 2757: Long Thin Networks
• Other IETF PILC WG RFCs and Ids
• Particularly, TCP over Second (2.5G) and Third (3G)

Generation Wireless Networks
– draft-ietf-pilc-2.5g3g-10

Petrozavodsk © Kimmo Raatikainen September 8, 2004

Additional Problems Additional Problems
Due to HTTPDue to HTTP

7

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 13

HTTP HTTP Performance ProblemsPerformance Problems

• HTTP requires an excessive number of round-trips
– In HTTP/1.0 each hypertext document involves creation and

deletion of several TCP connections

– one for each embedded document object

• Connections are typically short
– large overhead

– three-way handshake

– TCP slow-start

Petrozavodsk © Kimmo Raatikainen September 8, 2004

Java RMIJava RMI Over WirelessOver Wireless

8

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 15

Remote Method InvocationRemote Method Invocation

• RMI protocol interface lets Java objects on different
hosts communicate with each other in a transparent
way

• Clients can invoke methods of a remote object as if
they were local methods

• Preserve the object oriented paradigm in distributed
computing

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 16

Java RMI in a NutshellJava RMI in a Nutshell

Client Server

RegistryRegistryRegistry

ServerServerServer

Server-stubStub-serverStub-server

DGC messages

ClientClientClient

Send the me stub

StubStub

Here is the stub

Hello is here

invokeMethod()

“ReturnValue”

Lookup(): where is Hello?

9

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 17

Java RMI in a NutshellJava RMI in a Nutshell

Client Server

RegistryRegistryRegistry

ServerServerServer

Server-stubStub-serverStub-server

DGC messages

ClientClientClient

Send the me stub

StubStub

Here is the stub

Hello is here

invokeMethod()

“ReturnValue”

Lookup(): where is Hello?

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 18

“Hello World” Example“Hello World” Example

TCP 1

Header
Protocol Ack, EPId

EPId , Lookup()

ServerRef

Header

Protocol Ack, EPId
EPId, dirty()

Lease
Ping

Ping Ack

DGCAck
Ping

Ping Ack
sayHello()
“Hello World”

clean()

clean result

...

TCP 2

ParallelParallel

Client Registry Server

10

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 19

Data traffic analysisData traffic analysis

Client to Server and
Registry
(bytes)

Server and
Registry to

Client
(bytes)

Total
(bytes)

Registry Lookup 55 (6%) 276 (42%) 331 (20%)
Invocation Data 41 (4%) 37 (6%) 78 (5%)

DGC Data 831 (85%) 305 (46%) 1136 (69%)
Protocol

Overhead
52 (5%) 40 (6%) 92 (6%)

Total 979 (100%) 658 (100%) 1637 (100%)

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 20

RMI OptimizationRMI Optimization

• Maintain compatibility with Java RMI specifications
• Avoid redundancy in communication protocol
• Use compression and caching to minimize data

transmission

11

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 21

Java RMI OptimizationJava RMI Optimization

• Protocol
– Use of Mediators to minimize the exchange of data through

the wireless link.

• Data Communication
– Optimized Communication: Compress and Optimize data

communication

• Stub&Class Loading
– If possible, avoid to download stubs

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 22

Protocol OptimizationProtocol Optimization

• The idea is to de-couple the connection between the
client and the server using mediators.

Wireless Link

Mobile Node

RMIAgentRMIAgent

ClientClient

RMIProxyRMIProxy

NamingNaming

Access Node

12

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 23

Optimized RMIOptimized RMI
Mobile Node

ClientClientClient

FakeStubsFakeStubFakeStub

ProxyProxyProxy

AgentAgentAgent

Monads
Registry

Monads
Registry
Monads
Registry

ClientClientClient

RegistryRegistryRegistry

ServerServerServer

RegistryRegistryRegistry

ServerServerServer

Access Node

C
ac

h
e

C
ac

h
e

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 24

Optimized RMIOptimized RMI
Mobile Node

ClientClientClient

FakeStubsFakeStu
b

FakeStu
b

ProxyProxyProxy

AgentAgentAgent

Monads
Registry

Monads
Registry
Monads
Registry

ClientClientClient

RegistryRegistryRegistry

ServerServerServer

RegistryRegistryRegistry

ServerServerServer

Access Node

C
ac

h
e

C
ac

h
e

13

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 25

Optimized Remote InvocationOptimized Remote Invocation
RMI AgentRMI Agent RegistryRegistry ServerServer

Header

Protocol Ack

Lookup() lookup

ServerRef

dirty()

Lease

ClientClient RMI ProxyRMI Proxy

In cache?

Lookup()

InternalRef

AgentRef Cache and mark
for sync First?

Header

Protocol Ack
Header

Protocol Ack
dirty()

Lease
count[ref]++

DGCAck
Header

Protocol Ack

DGCAck

sayHello () sayHello()
sayHello ()

“Hello World”“Hello World”
“Hello World”

clean()

clean resultclean result
clean result

...
clean() clean()Last?

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 26

Comparison between Normal RMI and Optimized RMIComparison between Normal RMI and Optimized RMI

Registry
Invocation

Remote
Invocation

Total

Java RMI 7.1 sec 1.3 sec 8.4 sec
Optimized

RMI
1.7 sec 0.6 sec 2.3 sec

Improvement 417% 216% 365%

14

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 27

ConclusionsConclusions

• Designers cannot just “plug-in” wireless communication
to existing solutions

• Wireless issues extend their influence also to
middleware component and eventually to applications

• Solutions are there, just mostly ignored

Petrozavodsk © Kimmo Raatikainen September 8, 2004

WirelessWireless Java RMI Java RMI BackgroundBackground

15

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 29

Test Test ArrangmentsArrangments

• Operating Systems
– Clients:

• Windows98

• Linux (Red Hat 6.1, kernel 2.2.14)

– Server

• Windows NT (SP 6)

• Linux (Red Hat 6.1, kernel 2.2.14)

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 30

Test ArrangementsTest Arrangements

• Java Virtual Machine
– Sun JDK 1.2.2 (Linux and Windows)

• Wireless communication
– GSM HSCSD (5 configurations)

• Benchmark Suite
– KaRMI from University of Karlsruhe

16

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 31

Lookup Results (windows)Lookup Results (windows)

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 32

Lookup DifferencesLookup Differences

17

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 33

Invocation ResultsInvocation Results
Image Uplink (Linux)Image Uplink (Linux)

Petrozavodsk, September 8, 2004 Kimmo Raatikainen 34

Invocation Results Invocation Results
TwoTwo--way Text uplink way Text uplink

