SERVICE
LOCATION
PROTOCOL:

Automatic
Discovery of IP
Network Services

ERIK GUTTMAN, Sun Microsystems

servers, peers, and infrastructure—is a key problem facing network
technology’s advance. As long as configuration remains difficult, net-
work administration will be expensive, tedious, and troublesome, and users
will be unable to take advantage of the full range of capabilities networked
systems could provide. The Service Location Protocol* is an Internet Engi-
neering Task Force standard for enabling network-based applications to
automatically discover the location—including address or domain hame
and other configuration information—of a required service. Clients can
connect to and make use of services using SLP. Currently, without SLP,
service locations must be manually configured or entered into a configu-
ration file. SLP provides for fully decentralized operation and scales from
small, unadministered networks to large enterprise networks with policies
dictating who can discover which resources.
This article describes SLP’s operation and how it adapts to conditions
where infrastructure is not available, where administration is minimal, or
where network administrators simply wish to reduce workload.

T he complexity of configuring every element in the network—clients,

BACKGROUND

The Service Location Protocol (SVRLOC) working group has been active
in the IETF for several years. In 1997, the group published SLP Version 1
as a Proposed Standard RFC.* In June 1999, the Internet Engineering Steer-
ing Group announced that Version 2 and its related documents were pro-
moted to Proposed Standard RFCs as well.? SLPv2, which updates and
replaces SLPv1, is the subject of this article. It removes several of the orig-
inally imposed requirements, provides protocol extensibility (new options
can be added without modifying the base protocol), adheres to new IESG
protocol recommendations, improves security, and eliminates a number of
inconsistencies in the SLPv1 specification.

IEEE INTERNET COMPUTING 1089-7801/99/$10.00 ©1999 IEEE

NOILYEHNOIANODOO1LNY

As computers become more

portable and networks larger
and more pervasive, the

need to automate the location
and client

configuration for

network services also
increases. The Service Location
Protocol is an IETF standard
that provides a scalable
framework for automatic
resource discovery on IP

networks.

http://computer.org/internet/ JULY « AUGUST 1999 71

72

O C O N F |1

G U R AT I O N

-l

Active DA discovery

Service request

-}

DA

DA advertisement

(UA
SA

o |)

-
|

Passive DA discovery

DA advertisement

-
|

UA

SA

Figure 1. Methods of DA discovery. In active discovery, User
Agents and Service Agents multicast requests to locate Directory
Agents on the network, whereas, in passive discovery, UAs and
SAs learn of DAs via periodic multicast advertisements.

JULY « AUGUST 1999

Backward compatibility with SLPv1 depends on
whether the Directory Agent (described in the next
section) supports both versions. For example, Sun
has successfully implemented a backwardly com-
patible SLP DA. Otherwise, backward compatibil-
ity requires a Service Agent (also described below)
to implement both versions of the protocol.

Problems with Earlier Protocols

Prior to SLP, service discovery protocols allowed
users to discover services only by type. For instance,
both Apple and Microsoft offered networking pro-
tocols that could discover instances of printers and
file servers, and users had to then select from the
list to meet their needs. From the beginning, the
SVRLOC working group sought a solution that
would allow network software to discover services
according to their characteristics as well as type.
Thus, clients would be able to explicitly discover
services that met their requirements, and software
could automatically obtain the service location
without bothering users.

On the other hand, since services are advertised
along with their characteristics, SLP also enables
rich user interaction. SLP enables browser opera-
tions since the protocol includes a set of directory-
like functions. Thus, clients using SLP can browse
all the available types of service. These clients may
also request the attributes of a class of service, which
aids in formulating interactive requests. Finally,
SLP makes it possible to look up the attributes of
a particular service once it has been discovered.

Another problem with the proprietary protocols
was their notorious lack of scalability. The

http://computer.org/internet/

SRVLOC working group sought to correct this
problem by minimizing the impact of service dis-
covery on the network. SLP uses multicast and
Dynamic Host Configuration Protocol® to initial-
ize its scalable service discovery framework without
the need for configuring individual SLP agents.
SLP can operate in networks ranging from a single
LAN to a network under a common administra-
tion, also known as an enterprise network. These
networks can be quite large (potentially tens of
thousands of networked devices). Neither multi-
cast discovery nor DHCP scales to the Internet,
since these protocols must be configured and
administered. Moreover, the Internet lacks a com-
mon centralized administration. To the extent that
SLP relies on either multicast discovery or DHCP
for its own configuration, SLP does not scale to the
Internet.

Current SLP Implementations

Sun Microsystems, Novell, IBM, Apple, Axis Com-
munications, Lexmark, Madison River Technolo-
gies, and Hewlett-Packard have adopted SLPv1,
and, increasingly, SLPv2 for products. There are also
two reference implementations of SLPv2 available
from http://www.srvloc.org/.

PROTOCOL OVERVIEW

SLP establishes a framework for resource discovery
that includes three “agents” that operate on behalf
of the network-based software:

» User Agents (UA) perform service discovery on
behalf of client software.

= Service Agents (SA) advertise the location and
attributes on behalf of services.

= Directory Agents (DA) aggregate service infor-
mation into what is initially a stateless
repository.

Figure 1 illustrates the two different methods for
DA discovery: active and passive. In active discov-
ery, UAs and SAs multicast SLP requests to the net-
work. In passive discovery, DAs multicast adver-
tisements for their services and continue to do this
periodically in case any UAs or SAs have failed to
receive the initial advertisement.

UAs and SAs can also learn the locations of DAs
by using the DHCP options for Service Location,
SLP DA Option (78).* DHCP servers, configured
by network administrators, can use DHCP Option
78 to distribute the addresses of DAs to hosts that
request them. SLP agents configured in this man-

IEEE INTERNET COMPUTING

R V

I C E L O C AT I O N P R O T O C O

ner do not require the use of multicast discovery,
since this is only used to discover DAs and to dis-
cover services in the absence of DAS.

Operational Modes
SLP has two modes of operation:

= When a DA is present, it collects all service
information advertised by SAs, and UAs uni-
cast their requests to the DA.

= Inthe absence of a DA, UAs repeatedly multi-
cast the same request they would have unicast
to a DA. SAs listen for these multicast requests
and unicast responses to the UA if it has adver-
tised the requested service.

When a DA is present, UAs receive faster respons-
es, SLP uses less network bandwidth, and fewer (or
zero) multicast messages are issued.

Aside from unsolicited announcements sent by
DA:s, all messages in SLP are requests that elicit
responses. By default, SLP agents send all messages
in UDP datagrams; TCP is used only to send mes-
sages that don't fit in a single datagram.

Service Advertisements

Services are advertised using a Service URL, which
contains the service’s location: the IP address, port
number and, depending on the service type, path.
Client applications that obtain this URL have all
the information they need to connect to the adver-
tised service. The actual protocol the client uses to
communicate with the service is independent of
SLP.

Service Templates>—documents registered with
the Internet Assigned Numbers Authority
(IANA)—define the attributes associated with ser-
vice advertisements. Templates specify the attrib-
utes, and their default values and interpretation,
for a particular service type. SAs advertise services
according to attribute definitions in the Service
Templates, and UAs issue requests using these same
definitions. This ensures interoperablility between
vendors because every client will request services
using the same vocabulary, and every service will
advertise itself using well-known attributes.

OPERATIONS AND SCENARIOS

SLP operates in several different scenarios.
Initialization

At startup, UAs and SAs first determine whether
there are any DAs on the network. DA addresses

IEEE INTERNET COMPUTING

In SLP, User Agents and Service Agents can use the multicast con-
vergence algorithm to discover Directory Agents. UAs can also use
it to issue requests when no DA is present. This algorithm allows
SLP agents to receive replies from more responders than they could
with standard multicast. Ordinarily in multicast, if there are many
responders, a requester is likely to be inundated by the implosion
of responses.

The SLP agent attempting to discover services (or DAS) issues
an SLP Service Request message using multicast. This may result
in one or more unicast response messages. After a wait period,
the request is reissued with an appended “previous responders
list,” including the address of each SLP agent that has already
responded. When SAs or DAs receive requests, they first examine
the previous responder list. If they discover themselves on the list,
they do not respond to the request.

The previous responder list can contain about 60-100 entries
before it, combined with the request, becomes too large to fit in
the request datagram. Reliable multicast is a notoriously difficult
problem, but SLP’s multicast convergence algorithm provides a
”semi-reliable” multicast transaction.

Figure A illustrates the algorithm’s operation as used in DA
discovery. When the request is first sent, DAs 1, 2, and 3 reply,
but the reply from DA 3 is lost. When the request is retransmitted
a second time, DAs 1 and 2 do not respond, but since DA 3 is
not yet on the list, it replies again. On the third retransmission
no DAs respond since they all finally appear on the previous
responders list.

DAl

DA3

UA

DA advertisement

Service request

)) (PR list includes DAs 1 and 2)

DA3

Service request
) (PR list includes DAs 1, 2, and 3)

\)

Figure A. The multicast convergence algorithm in DA discovery.

http://computer.org/internet/

JULY « AUGUST 1999

73

T4

O C O N F |1

G U R AT I O N

Presentation

client application

UA

Overhead
projection server

Unicast Unicast
discovery .registration

Q
DA | ©

Server
)

Figure 2. Normal operation of SLP. The SA registers the overhead
projection server’s location with the DA, and in response to the
UA’s Service Request message, it obtains this location from the DA
via a Service Reply message.

JULY « AUGUST 1999

can be configured statically (either manually con-
figured, read from a configuration file, or hard-
coded). DA locations can also be obtained dynam-
ically using DHCP as discussed above. In these
cases, there is no need to perform DA discovery. In
all other cases, UAs and SAs use the SLP multicast
convergence algorithm to discover DAs (see the
sidebar, “SLP Multicast Convergence Algorithm™).
They multicast Service Request messages to obtain
DA advertisement messages, which include the Ser-
vice URL® as well as the DA's scope, attributes, and
digital signature. From this information UAs and
SAs can locate the correct DA for message exchange.

Standard Case

Figure 2 depicts SLP’s normal operation. In this
example, a client program seeks an overhead pro-
jection server to display a presentation to an assem-
bled audience. The SA registers the service’s loca-
tion with the DA, and the UA obtains this location
from the DA in a Service Reply message.

Note that the SLP agents depicted may or may not
reside on separate networked computers, but only
one DA or SA can be on any given machine, due to
the rules of the multicast convergence algorithm.

The networked service process advertises itself by
registering with a DA, using an internal Service Loca-
tion Protocol API.8 An SA on the same computer as
the network service registers service information by
sending a Service Registration message to the DA and
awaiting a Service Acknowledgment in reply.

Service registrations have lifetimes no greater
than 18 hours, so the SA must reregister the service
periodically, or the lifetime expires. In the event

http://computer.org/internet/

that the service terminates, the SA can optionally
send a Service Deregister message to the DA, but
even in the worst case, when the service fails, the
registration will age out. This ensures that stale
information will not persist with the DA.

Client software can use the standard Service Loca-
tion Protocol API to find the particular service it
requires. In this case, a UA sends the DA a Service
Request that includes a search filter that is syntacti-
cally identical to the request format used by version
3 of the Lightweight Directory Access Protocol.” SLP
thereby provides a directory-like lookup of all ser-
vices that match the client’s requirements. The DA
returns a Service Reply message containing Service
URLs and enough information for the client to con-
tact each service that matches the request.

Larger Network Environments

A DA may serve thousands of clients and servers,
so SLP gives administrators ways to improve over-
all performance and scalability of an SLP deploy-
ment as DAs become more loaded.

More DAs. First of all, administrators can simply
activate more DAs to enhance SLP performance.
Because SAs register with each DA they detect, all
DAs will eventually contain the same service infor-
mation, provided that all SAs can find them all. (Of
course, sometimes this is neither possible nor desir-
able.) Adding more DAs creates roughly duplicate
repositories of service information without requir-
ing any formal database synchronization between
them. Moreover, since UAs can choose any avail-
able DA to issue requests to, the load will be shared
among DAs. Additional DAs also provide robust-
ness in cases where one fails or becomes overloaded.

Scope. The second mechanism for increasing SLP
scalability is scope. A scope is a string used to group
resources by location, network, or administrative cat-
egory. SAs and UAs are by default configured with
the scope string “default.” Figure 3, for example,
shows how a UA issuing requests in the legal depart-
ment of an organization might find services within
that scope, but not in accounts payable. (Note that
services may be available in multiple scopes.)

UAs can accumulate DA advertisements to form
lists of all available scopes. When no DAs are pre-
sent, UAs can multicast requests for SA advertise-
ments to create lists of scopes supported by the SAs.

DHCP. SLP agents (UAs, SAs, and DAs) can access
non-default scopes via static configuration or

IEEE INTERNET COMPUTING

R VvV | C E L O C AT I O N P R O T O C O L

DHCP Option for Service Location, SLP Service
Scope Option (79).* Because it allows an adminis-
trator to easily control the set of services available
to a particular client, DHCP is actually the pre-
ferred method for configuring SLP. For example,
all services and clients in a hotel room could be
configured to the scope of that one room. A laptop
computer used in a particular room would discov-
er only those services in the room itself. Hotel
guests could then locate printers in their own
rooms, but not in others to which they have no
physical access.

Small Office or Home Networks
When there is no directory agent, a UA multicasts
the same requests to the SAs that it would have
unicast to the DA. Thus, SAs must be prepared to
answer Service Requests. A Service Request
includes a query that the SA processes against the
attributes of the services it advertises. If the multi-
cast request fails to match, or if the SA is unable to
process it (due to an error in the request, for
instance), the SA simply discards the request.

The multicast convergence algorithm used for DA
discovery is also used by UAs for service discovery.

It is important to note that services can be dis-
covered by clients using SLP in small networks
without any SLP-specific configuration or the
deployment of any additional services. SLP dis-
covery works even in the absence of DNS, DHCP,
SLP DAs, and routing. This makes SLP suitable for
the home or small office environment, where
impromptu and unadministered networks would
greatly benefit from automatic service discovery.

FITTING THE PIECES TOGETHER
SLP, in itself, only provides a service discovery frame-
work. That is, SLP agents are idle until service soft-
ware is advertised, populating the SAs, which in turn
propagate information to appropriate DAs. UAs are
inactive until a client issues a specific request.

The SLP API, however, allows applications and
services to access SLP’s functionality. It provides for
both synchronous and asynchronous operations,
and it features both C and Java bindings. (Table 1
summarizes the C language bindings, and Figure 4
summarizes the Java language bindings.) The API
contains separate interfaces for client software to
use for discovery and for server software to use for
advertising; peer-to-peer software can use both por-
tions. Figure 5 illustrates the interaction between a
client and a service, the SLP API, and a UA and SA
performing a Service Request operation.

IEEE INTERNET COMPUTING

SA

UA |Legal

Accounts
payable

Figure 3. Scope in SLP. User Agents can only locate services within
the scopes to which they have access.

public interface Advertiser {
public abstract void register(ServiceURL url, Vector attributes);
public abstract void addAttributes(ServiceURL url, Vector attributes);
public abstract void deleteAttributes (ServiceURL url, Vector attributes);

b

public interface Locator {
public abstract Locale getLocale();
public abstract ServiceLocationEnumeration
findServiceTypes(String namingAuthority, Vector scopes)
public abstract ServiceLocationEnumeration
findServices(ServiceType type, Vector scopes, String searchFilter)
public abstract ServiceLocationEnumeration
findAttributes(ServiceURL URL, Vector scopes, Vector attributelDs)
public abstract ServiceLocationEnumeration
findAttributes(ServiceType type, Vector scopes, Vector attributelDs)
it

public class ServiceLocationManager {
public int getRefreshinterval();
public static Vector findScopes();
public static Advertiser getAdvertiser();
public static Locator getLocator();

k

Figure 4. SLP API Java bindings.

Details

SLP is a mostly string-based protocol that uses a
binary message header, as shown in Figure 6. Mes-
sages are largely composed of UTF-8 strings® pre-
ceded by length fields. (See Table 2 on page 79 for
a description of other fields.)

The SLP header concludes with a Language
Tag.® Attribute value strings in the SLP message are
translated into the language indicated by the tag,
and the Service Template® associated with a partic-

http://computer.org/internet/ JULY « AUGUST 1999

75

A U T O C ONUF I G UR ATI O N

Client Server instance, only has to be able to send Service
. o Wants . Requests (though it also needs to handle Service
Client application to find... Service A .

— Replies and DA advertisements as a result of those
FindService SLP API RegisterService requests). An SA need not support any features
besides discovering DAs, responding to Service
SLp Sp Requests, and sending Service Registration mes-

User Agent Service Agent sages to appropriate DAS.

))> [

Multicast service request Deployment

Currently, service location information is acquired by
prompting the user or reading it from a configura-
tion file. To use SLP, client software vendors must
modify the network configuration portions of the
client to employ the SLP API° to obtain the location
of the server. By modifying the failure notification

g
-}

Unicast service reply

Figure 5. Client server discovery using SLP without DAs. The client
application uses a UA to multicast a Service Request that the SA
responds to with a unicast Service Reply.

path as well, automatic service discovery can be reini-

00 Version Function ID Length tiated when a server fails. In this way, another server
04 | Length, continued Flags Next extension can be Iocat_ed Wi_th_out in_terruptin_g_the user’s ser_vice.
’ Alternatively, it is possible to utilize the benefits of

08 Next extension offset, continued XID SLP without modifying the client software, as long
as the client already uses an existing service for con-

oC Language tag length Language tag ... figuration. For instance, some clients use the

LDAPv3 protocol*® to access a directory for config-
uration information, so they can discover services that
SLP has automatically registered with the directory.
SLP attributes, Service Templates, and search fil-
ters are all compatible with a subset of LDAPv3. This

Figure 6. The SLP Header. The SLP header precedes and character-
izes all transmitted SLP messages.

ular service provides additional information regard-
ing internationalization. Some strings have stan-
dardized translations, while others have fixed mean-
ings and are not intended to be translated.

The Function ID field indicates the SLP mes-
sage type, all of which are summarized in Table 3
(page 79).

SLP’s central function is the exchange of Service
Request and Service Reply messages. A UA, for

means that services registered with an SLP DA can
be automatically registered into an LDAPv3 direc-
tory. That is, an LDAPv3 directory can function as
the back end for an SLP DA. Thus, users of the
LDAPv3 directory can obtain current network ser-
vice information automatically. SLP’s interoperabil-
ity with LDAPv3 eases the integration of network
configuration information in IP networks, where
directories are increasingly used to centralize access.

Table 1. SLP API C language bindings.

Binding Description

SLPOpen Clients and services initialize the SLP library and obtain a handle to use with all subsequent calls.

SLPClose Clients and services release the SLP library.

SLPReg Services register their service URL and attributes. A service may also use this interface to update its
service attributes or refresh a registration before it expires.

SLPDereg Services can deregister their availability.

SLPDelAttrs Services can deregister a particular attribute.

SLPFindSrvs Clients can obtain service URLs based on their query by service type, SLP scope, and/or service attrib-
utes. These URLs will, by definition, be the locations of services the client can use.

SLPFindSrvTypes Clients can discover all types of service available on the network.

SLPFindAttrs Clients can discover attributes of a particular service or the attributes of all services of a given service type.

76 JULY « AUGUST 1999 http://computer.org/internet/ IEEE INTERNET COMPUTING

R V I

O C A T I O N P R O T O C O L

There is a great deal of work going on in the area of auto-
configuration. Comparison with other approaches shows
SLP’s generality and versatility.

DHCP Service Options

The location of several types of service can be configured
using DHCP. Administrators can configure certain clients
for a particular server. For example, DHCP option 42 con-
figures a host to use a particular Network Time Protocol
(NTP)* server or servers.

Using DHCP to configure services is significantly different
from using SLP. DHCP servers, for instance, have no intrinsic
way to determine whether an address actually refers to a cur-
rently available server. SLP, on the other hand, lets you dis-
cover servers with known availability. SLP also allows a client
to discover a server that meets its specific requirements. DHCP
provides no such mechanism.

DNS Resource Records for Specifying the
Location of Services

The Domain Name System (DNS) SRV Resource Record
(SRV RR)? allows for lookups of domain names associated
with service names. Thus, a DNS resolver can request all
instances of a particular service type within a given domain.

For example, to find all instances of TCP-based line printer
(LPR) services in the domain “nonexistent.net,” a DNS resolver
would send a request to the DNS SRV RR for the service named
“|pr.tcp.nonexistent.net.” This might return two domain names:
“big.nonexistent.net” and “small.nonexistent.net.”

Unlike operations in SLP, resolving a DNS SRV RR cur-
rently requires a DNS server to be present. Woodcock and
Manning currently have an effort underway to standardize
a new mechanism to allow multicasting of DNS requests.*

ADDITIONAL FEATURES

The essential function of SLP is service discovery.
SLP has also been designed to provide security,
extensibility, support for browsing operations, and
operation over IPv6. These features extend the util-
ity of SLP, and will be especially useful once a stan-
dardized security infrastructure has been widely
adopted on IP networks.

According to this proposal, individual systems could contain
“stub” DNS servers that would respond to multicast requests
in the absence of a true DNS server. This mechanism would
remove the requirement for a DNS server to be present,
making the DNS SRV RR’s approach suitable for small net-
works lacking in administration and infrastructure.

This service discovery method, however, allows the client
to discover services only by type, and not by service char-
acteristics.

There is currently no way to update DNS servers when ser-
vices become available or go down; as with DHCP, the client
system might easily obtain locations for services that are not
currently available.

Simple Multicast Discovery Protocols

A variety of simple multicast discovery protocols have been
proposed over the years.>7 In all of them, a client multicasts
a request for a desired service type. All available services
that receive the multicast request send a response, includ-
ing the location of services matching the type requested.

Some of the proposals allow services to announce their
presence as they come up and periodically thereafter, so
clients can become immediately aware of new services.
However, none of them scales beyond a small network.
Unlike SLP, they provide no means for automatic service
information collection. Moreover, they cannot detect that
they are in a larger network and should stop multicasting
or limit their TTL to avoid disrupting operations.

Finally, these protocols fail to include any features for reli-
able multicasting. If dozens of responders attempt to reply to
a multicast request, the implosion of replies may inundate the
requester. SLP ameliorates this problem by using previous-

continued on p. 78

which prevents SLP from being used to malicious-
ly propagate false information about the location
of services.

Digital signatures. An SA can include a digital sig-
nature produced with public key cryptography
along with its registration messages. A DA can
then verify the signature before registering or

deregistering any service information on the SA's

Security

SLP is designed to make service information avail-
able, and it contains no mechanisms to restrict
access to this information. Its only security prop-
erty is authentication of the source of information,

IEEE INTERNET COMPUTING

behalf. These digital signatures are then forward-
ed in reply messages to UAs, so they can reject
unsigned or incorrectly signed service information.
Of course, DAs and UAs can only verify signa-
tures, not produce them.

http://computer.org/internet/ JULY « AUGUST 1999

77

78

O CcC ON F I G UR ATI O N

continued from p. 77

responder lists in its multicast convergence algorithm (as dis-
cussed in the sidebar). Of course, the replies could be stag-
gered by requiring responders to wait for a random interval,
but this would force the requester to wait much longer for
answers where there are few results.

Jini

Sun Microsystems’ Jini technology provides a Java-oriented
set of mechanisms and programmer interfaces for automat-
ic configuration. As an IETF standard, SLP is a general mech-
anism suited to heterogeneous systems. Jini, on the other
hand, leverages Java’s uniformity across platforms, provid-
ing powerful semantics for service discovery operations.

The Jini discovery architecture is similar to that of SLP. Jini
agents discover the existence of a Jini Lookup Server, which
collects service advertisements in a manner analogous to
DAs in SLP. Jini agents then request services on behalf of
client software by communicating with the Lookup Server.
Unlike SLP, however, where DAs are optional, Jini requires
the presence of one or more Lookup Servers.

Jini’s discovery mechanism offers some advantages to
Java-based clients. The Lookup Server uses object-oriented
matching to determine which services support the client’s
requested Java interface. Both Jini and SLP use attributes to
find services that match the client’s requirements, but where
SLP uses string-based attributes and weak typing, Jini
employs Java objects throughout.

Service discovery with SLP returns a URL denoting a ser-
vice’s location. Jini, on the other hand, returns an object that
offers direct access to the service, using an interface known
to the client.

For some embedded systems that offer network services,
running a Java Virtual Machine may require memory and

As an additional level of authentication, DAs
can also include digital signatures with their adver-
tisements. UAs and SAs can thus avoid DAs that
have not been legitimately established by the site’s
administration because SLP agents that possess pri-
vate keys for generating verifiable digital signatures
are (by definition) trusted to legitimately advertise

themselves.

Security Configuration Requirements. SLP is
designed to automatically configure service loca-
tions with minimal static configuration require-
ments for SLP agents. SLP security, however, does

JULY « AUGUST 1999 http://computer.org/internet/

processing resources that are too costly, thus precluding the
use of Jini to advertise services. In those cases, SLP can
advertise the services as well as a “Java Driver Factory.” A
Java Driver Factory is a class that can be used to produce
(instantiate and initialize) Java objects based upon initial-
ization parameters. An SLP-Jini bridge can detect services
and obtain their attributes and Java Driver Factory. (For
more, see http://www.srvloc.org) The bridge uses the Java
Driver Factory to instantiate a Java driver object, initializing
it with the attributes advertised using SLP. The bridge then
registers the service with a Jini Lookup server.

When a Jini client discovers a service, it will be able to
use it equally well, regardless of whether it was directly reg-
istered with the Jini Lookup Server or registered by proxy
via an SLP-Jini bridge. The bridge allows clients to make
use of Jini’s powerful API to discover services on the net-
work that cannot support Jini natively themselves.

REFERENCES

1. D. Mills, “Network Time Protocol (Version 3). Specification, Implemen-
tation and Analysis,” RFC 1305, Mar. 1992; available at http://
www.rfc-editor.org/rfc/rfc1305.txt.

2. A. Gulbrandsen and P. Vixie, “A DNS RR for Specifying the Location
of Services (DNS SRV),” RFC 2052, Oct. 1996; available at http://
www.rfc-editor.org/rfc/rfc2052.txt.

3. P. Mockapetris, “Domain Names—Implementation and Specification,”
RFC 1035, Nov. 1987; available at http://www.rfc-editor.org/rfc/
rfc1035.txt.

4. B. Woodcock and B. Manning, “Multicast Discovery of DNS Services,”
Dec. 1998, work in progress.

5. D. Brown, “IPLookup Service,” Personal Communication, 19 June 1997.

6. S. Honton, “Simple Server Discovery Protocol,” Jan. 1997, work in progress.

7. T.Cai, et al., “Simple Service Discovery Protocol/1.0,” Apr. 1999, work
in progress.

require some additional configuration (for the cryp-
tographic keys or certificates used in generating and
verifying digital signatures).

When needed, vendors of SLP-enabled clients
and services can establish new cryptographic algo-
rithms and data formats within SLP’s existing pro-
tocol. It is also possible to deploy new keys gradu-
ally, without requiring flag days, which would
require simultaneous reconfiguration of all interop-
erating systems. Suppose, for example, that corpo-
rate policy requires that old private keys for authen-
ticating servers be replaced in all SAs in the
enterprise every three months. If flag days were

IEEE INTERNET COMPUTING

R v I C E L

O C A T I O N P R O T O C O L

required, all SAs, UAs, and DAs would have to be
rekeyed at once. SLP, on the other hand, allows
phasing in of new keys. SAs include digital signa-
tures generated by both the new and old keys with
their messages until all UAs and DAs replace the old
keys, at which point, they phase out the old gener-
ation of keys.

Extensibility

SLP extensions are additional protocol elements
appended to messages. For example, there is an
extension for reporting when a service request omits
an attribute that is defined as required by a Service
Template.> Another extension currently under devel-
opment would allow UAs to request notification of
additional services as they appear on the network.

When an SLP agent recognizes a message exten-
sion, it will perform the appropriate processing. If
the extension is not recognized, it is either ignored
or the entire SLP message is discarded, depending
on how the message extension is labeled.

SLP’s extensibility allows for future enhance-
ments—such as additional error reporting, added
notification facility, and so on—without altering
the base protocol.

Browsing Features

In addition to its required features, the SLP speci-
fication describes several optional features that
could be used to support sophisticated service
browsers.

Service Type Request. Using this type of message,
UAs can discover all service types available on the
network. The response supplies a top-level taxon-
omy of services, which supports the basic require-
ments for building a general “service browser” on
top of SLP.

Attribute Request. A UA can use the Attribute
Request to retrieve all the attributes of a given ser-
vice in a manner similar to a directory lookup oper-
ation. The UA can also issue the request without
naming a specific service instance. The response
from the DA (or SAs if there is no DA) returns all
attributes and values for the requested service type
within the network. For example, an Attribute
Request for all available video servers on the net-
work might return the following properties:

= locations include my building and a remote

office;
= video streams include programs A and B.

IEEE INTERNET COMPUTING

Table 2. SLP header fields.

Header Field

Version

Length

Function ID

Flags

Next Extension
Offset

XID

Language Tag
Length

Language Tag

Description

SLP protocol version: 1 and 2 are defined.
Length of the entire SLP message.
Message type that follows the SLP Header.
Indicate special treatment of the message.

Offset, in bytes, to the first SLP Extension.
Unigque number for each unique request.

Length of the Language Tag that follows.
Indicates the language of all human-readable
strings included in the SLP message.

Table 3. SLP message types and descriptions.

SLP Message Type

Service Request
Service Reply

Service Register

Service Deregister 4
Service Acknowledgment5

Attribute Request 6

Attribute Reply

DAAdvert

Service Type Request 9

Service Type Re

SAAdvert

ID Description

1 UAs find service by type, scope, and
search filter.

2 DA (or SA) returns Service URLs and
their lifetimes.

3 SAs register Service URLs and attri-

butes.

SAs deregister Service URLs and

attributes.

DAs acknowledge a successful reg-

istration or deregistration.

UA:s find attributes by service type or

by Service URL.

7 DA (or SA) returns attribute infor-
mation.

8 DA sends its Service URL, scope, and

attributes.

UA:s find service types by scope.

DA (or SA) returns a list of service

types.

SA sends its Service URL, scope, and

attributes.

ply 10

11

With this information, a browser interface could
help me determine the location of a video server in
my building or a video server that serves video
stream A. If, however, | request a server that is in
my building and serves video stream A, | might not
succeed because the attributes are independent:
video stream A might only be available from the
server in the remote office.

Attribute Request messages are also useful for
determining the attributes of a particular service.
The UA locates the corresponding Service URL,

http://computer.org/internet/

JULY « AUGUST 1999

79

80

O C O N F |1

G U R AT I O N

JULY « AUGUST 1999

and the Attribute Request uses it to look up the
service’s attributes. Network software could also
discover a particular service’s features by request-
ing the attributes directly, which would require
subsequent protocol feature negotiation between
client and server.

SLP Operation over IPv6

The formal specification has not yet been stan-
dardized, but SLP is designed to provide service dis-
covery facilities that will work for networks using
IPv6.1* Once the debate is settled regarding which
string representation to use in URLSs for numerical
IPv6 addresses, some minor changes will be needed.
Service URLs® containing numerical addresses will
require a different format from what IPv4 uses, and
link-local addresses will require some special han-
dling in IPv6. For example, DAs that obtain service
registrations with link-local numerical addresses
must not forward them using the link on which
they were registered. Also, the address to use for
site-local scoped multicast operations differs in
IPv4 from what it is in 1Pv6.12

SUMMARY

SLP is an IETF standard for service discovery and
automatic configuration of clients. It provides for
fully decentralized operation and scales from a
small, unadministered network to an enterprise
network where policy may dictate who should dis-
cover which resources. This paper describes how
SLP operates and how it adapts to conditions where
infrastructure is not available, where administra-
tion is minimized, and where network administra-
tors in large enterprises wish to reduce tedium and
workload. While alternative mechanisms exist, SLP
remains the most general and versatile solution for
service discovery on TCP/IP networks. .

REFERENCES

1. J. Veizades, E. Guttman, and C. Perkins, “Service Location
Protocol,” IETF, RFC 2165, June 1997; available at
http://www.rfc-editor.org/rfc/rfc2165.txt.

2. E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service
Location Protocol, Version 2,” IETF, RFC 2608, June
1999; available at http://www.rfc-editor.org/rfc/rfc2608.txt.

Coming in November 1999

3. R. Droms, “Dynamic Host Configuration Protocol,” IETF,
RFC 2131, Mar. 1997; available at http://www.rfc-editor.
org/rfe/rfc2131.txt.

4. C. Perkins and E. Guttman, “DHCP Options for Service
Location Protocol,” IETF, RFC 2610, June 1999; available
at http://www.rfc-editor.org/rfc/rfc2610.txt.

5. E. Guttman, C. Perkins, and J. Kempf, “Service Templates
and Service: Schemes,” IETF, RFC 2609, June 1999; avail-
able at http://www.rfc-editor.org/rfc/rfc2609.txt.

6. J. Kempfand E. Guttman, “An API for Service Location,”
IETF, RFC 2614, June 1999; available at http://www.rfc-
editor.org/rfc/rfc2614.txt.

7. T. Howes, “The String Representation of LDAP Search Fil-
ters.” IETF, RFC 2254, Dec. 1997; available at
http://www.rfc-editor.org/rfc/rfc2254. txt.

8. F Yergeau, “UTF-8, a Transformation Format of ISO
10646,” IETF, RFC 2279, Jan. 1998; available at
http://www.rfc-editor.org/rfc/rfc2279.txt.

9. H. Alvestrand, “Tags for the Identification of Languages,”
IETF, RFC 1766, Mar. 1995; available at http://www.rfc-
editor.org/rfc/rfc1766.txt.

10. M. Wahl, T. Howes, and S. Kille, “Lightweight Directory
Access Protocol, version 3,” IETF, RFC 2251, Dec. 1997;
available at http://www.rfc-editor.org/rfc/rfc2251.txt.

11. E. Guttman and J. Veizades, “Service Location Protocol Mod-
ifications for IPv6,” Oct 1998, work in progress.

12. R. Hinden and S. Deering, “IP Version 6 Multicast Address

Assignments,” IETF, RFC 2375, July 1998; available at
http://www.rfc-editor.org/rfc/rfc2375.txt.

FURTHER READING ON SLP
J. Kempf and P. St.Pierre, Service Location Protocol for Enterprise
Networks, John Wiley & Sons, 1999.
Service Location Protocol Home Page « http://www.svrloc.org/.

Erik Guttman is a staff engineer at Sun Microsystems. He is a
member of the Advanced Network Development team in
Sun Labs. His technical interests include automatic con-
figuration, network security, and network software testing.
He is an active member of the Internet Engineering Task
Force where he is the chairman of the Service Location Pro-
tocol (SVRLOC) Working Group. He received a BA in
Philosophy and Computer Science from UC Berkeley and
an MS in Computer Science from Stanford University.

Readers can contact Erik Guttman at erik.guttman@sun.com.

Survivable, High-Confidence Distributed Systems
Guest Editor: Mike Reiter, Bell Labs

http://computer.org/internet/

IEEE INTERNET COMPUTING

