
A New Look at Mobile Computing
Kimmo Raatikainen

University of Helsinki, Department of Computer Science
Helsinki Institute for Information Technology

Nokia Research Center
kimmo.raatikainen@

�
cs.helsinki.fi,hiit.fi,nokia.com �

Abstract— In the recent years we have seen enormous change
in information technology. The Internet has, at least in developed
countries, become a commodity; mobile phones are used almost
by everyone. The technology created for professionals 10–20 years
ago is used by laymen—unfortunately with serious problems in
usability, robustness and reliability. Now it is the time to go back
to the basics and rethink the fundamentals. We ask three primary
questions related to adequacy of current operating systems,
programming models, and middleware. In each case the answer
is no: existing solutions are not sufficient for tomorrow. Based on
our observations and expectations, we have formulated six key re-
search challenges that will enable to turn the current no-answers
to yes-answers. These challenges include reconfigurable systems,
context modeling, security-trust-privacy, software development,
programming models, and efficient always-on connectivity.

Index Terms— Wireless Internet, reconfigurable systems, con-
text modeling, security, trust, privacy, software development,
programming models, and efficient always-on connectivity.

I. INTRODUCTION

IN recent years we have seen an enormous increase in
Internet and mobile telephony. The next step will be a

merging of these two technologies leading to the Wireless
Internet. The Wireless Internet, however, will be much more
than just internet access from mobile devices. Rather, the
Wireless Internet will be almost invisible, as people will use
mobile services and applications directly. Behind the scenes
these services and applications will act as our agents, con-
ducting searches and communicating with other services and
applications to address our needs. The integration of mobile
technology and the Internet paradigm will enable development
of new context-aware applications. Besides traditional features
such as user preferences, device characteristics, properties of
connectivity, state of service (session) and usage history, the
context includes features strictly related to user mobility such
as current user’s geospatial location (time and space).

The transition to the Wireless Internet will be much more
demanding than the transition to mobile phones in voice
services. The primary reason is the heterogeneous demands of
various services and applications on the underlying computing
and communications infrastructure. Direct use of existing
Internet applications in a mobile environment has usually been
unsatisfactory; services and applications need to take into
account the specific characteristics of mobile environments.

Although Wireless Internet is already at its dawn, it is not
clear what will be the final outcome. Various visions have

Manuscript updated August 16, 2004.

been proposed. Mark Weiser spoke about invisible computing
and ubiquitous computing [1], [2]. Leonard Kleinrock speaks
about nomadic computing [3], [4]. Mahadev Satyanarayanan
speaks about pervasive computing [5]. The European Com-
mission speaks about ambient intelligence [6]. Wireless World
Research Forum speaks about adaptable personalized ambient-
aware services [7]. When these (and similar proposals) are
carefully examined, the conclusion is that they are—at least—
very close to each other, if not different names for the same
thing. There may be some minor differences in emphasis but
the core and major challenges are similar. In this paper we
speak of the “thing” as the Wireless Internet.

Personal networking is still another notion that needs to
be taken into account in the Wireless Internet. By personal
networking we mean not only body and personal area networks
but also protocol aspects of networking in the personal domain,
digital home and other smart places like shopping centers,
public and private transportation vehicles, ad-hoc communi-
ties, and networked (i.e., infrastructure provided) services (see
Figure 1). In addition, the solutions should also work in a
reasonable manner in non-smart places that do not have a
high-bandwidth connectivity or any connectivity at all.

In order to bring Mark Weiser’s dreams of invisible com-
puting into reality for mass markets, that is for hundreds of
millions of people, we still have a lot to do. In fact our claim
is that we must go back to the fundamentals; to reconsider the
foundations of mobile computing and communications.

The need of this reconsideration has its roots in the
fundamental changes in usage patterns. Communication and
computing devices move; users move and change their devices;
(sub)networks in cars, trains and airplanes move; software
moves from one execution environment to another. These
changes can be characterized as personal networking domains.
The objective is that the solution stacks for different domains
are as similar as possible.

All of us hope that we can reuse existing software technol-
ogy as far as possible. It saves us a lot of money now but
may in the future turn out to be extremely expensive. Perhaps
we should adapt the slogan used by the Queen Beatrice of
the Netherlands: “The natural resources are not a heritage
from our parents but a loan from our children.” In mobile
computing and communication the natural resources should
be replaced by the human-made artifacts. The attitude will
move the short-term focus from the current state we have to
the future stage we leave behind us.

If we are not all the time ready for a revolution, we may



2 A NEW LOOK AT MOBILE COMPUTING

Fig. 1. Personal Networking Domains

miss the train and we may find ourselves at the trap of basing
next releases of our products on existing legacy. We do not
claim that today is the right time to forget all legacy systems.
However, tomorrow it is even more costly to replace them.
We should ask ourselves whether or not we want to produce
pullovers for dinosaurs although the climate has already started
to cool and sooner or later the dinosaurs will disappear.

In this paper we discuss challenges of the Wireless Internet.
We start by stating our assumptions about future mobile appli-
cations. Based on the vision of adaptive, context-aware, per-
sonalized applications we have formulated three fundamental
questions related to operating systems, programming models,
and middleware. These questions are further elaborated into
research challenges.

II. FUTURE MOBILE APPLICATIONS

Since direct use of traditional Internet applications has not
usually provided satisfactory end-user experience, we need to
take a look at characteristics of future mobile applications.
The characteristics that should be taken into account include
communication, pocket size display as well as restricted mem-
ory size and computing power. We address communication
and application composition. The issues of user interfaces are
important but outside our expertise so we left them out.

A. Communication Characteristics

The most significant feature in communication needs of
applications in the Wireless Internet Era will be diversity.
All kinds of applications will be in use. Their Quality-of-
Service requirements (bandwidth, latency, reliability) as well

as communication patterns will be numerous. Some applica-
tions will also adjust their behavior according to the properties
of connectivity. Future mobile terminals will have a few,
say 3–6, applications simultaneously active. Some terminals
will also be able to use different access technologies either
simultaneously or one at a time. Therefore, the most important
property of any communication system is its ability to handle
a mixture of flows and traffic characteristics in a reasonable
way.

When an application interacts with a human end-user, the
interaction mode is a good classifier of applications. Most of
the applications fall into one of the following three categories:

1) Messaging. These applications are non real-time. The
underlying network can use store-and-forward, store-
and-retrieve, or store-and-push mechanisms. The appli-
cations are not delay sensitive. The delays can be on
the scale of seconds, minutes, or even hours. However,
the delivery must usually be error-free. The message
size varies from a few bytes to several megabytes. This
category calls for efficient use of network resources.

2) Interactive content retrieval. These applications are
nearly real-time. The users do not tolerate long delays.
Some content formats, such as audio and video, are
delay-sensitive but tolerate losses. In these applications
playback buffers can be used to balance delay variation.
Some other content formats, text in particular, are not
delay-sensitive but require error-free transmission.

3) Rich call. These applications require real-time commu-
nication. An example from the present is voice call and
that from the future is a multiparty videoconference.



KIMMO RAATIKAINEN 3

Fig. 2. Partitioning and Distribution of Application Logic

These calls will be annotated by drawings, text files,
etc., like emails today have attachments.

When machine-to-machine applications, that is applications
without human interactions, are also considered, then two
main categories of applications can be identified: control and
command applications and management applications. Their
communication falls into the class of messaging. In control
and command applications short messages (payload from 10
to 10,000 bytes) are typical. The message delivery must be
timely, reliable and error-free. The delays can seldom be more
than one second. The usual interaction pattern is either a
simple request-reply or a single notification. In management
applications the interaction patterns can be quite complicated
involving a dialog of several messages. Management applica-
tions require reliable and error-free transmission but the time
scale of delay bounds is in tens of seconds.

B. Application Composition

Fig. 2 depicts a highly abstracted vision of how an applica-
tion is distributed among various application servers, network
elements and terminal or end-user systems. It should be noted
that, for simplicity, the figure only shows a single terminal
device although multi-party applications will be much more
important and challenging than one-party applications such as
information browsing. In addition, we must also be ready to
cope with end-user systems based on body area networks and
home communication systems.

The execution environments or the platform layer consist
of middleware, operating systems and protocol stacks that
should support fast service development and deployment. The
platforms should make it easy to divide the application logic
into co-operating parts (someone may call them components),
to distribute and configure these components as well as to
redistribute and reconfigure them. Additional requirements for
future mobile applications include adaptability to changes in
the execution and communication capabilities, efficient use
of available communication resources, dynamic configuration
of end-user systems as well as ultimate robustness, high
availability and stringent fault-tolerance.

The requirements for data accessed by these applications
are quite similar. The execution environment should provide a
consistent, efficiently accessible, reliable and highly available
information base. This implies a distributed and replicated
worldwide file system that also supports intelligent synchro-
nization of data after disconnections.

C. Current Practice

The current trend in developing forthcoming telecommuni-
cation networks is to utilize Internet protocols. An immediate
implication is that IP is the networking protocol, that is the
layer 3 protocol of the ISO’s OSI reference model. However,
this is not sufficient. Other solutions—both above and below
the IP protocol—are also needed.

The main stream in the Internet Community seems to be



4 A NEW LOOK AT MOBILE COMPUTING

the IP-TCP-HTTP-XML protocol stack, in spite of the facts
that

1) TCP behaves poorly on transmission paths containing
both wireless and wired links [8]–[10],

2) HTTP 1.0 is one of the best examples of using TCP
capabilities in an extremely inefficient manner, and

3) XML is verbose and expensive to process.
In TCP transport over a wireless leg, there have been

significant enhancements due to the proposals from the IETF
transport area (particularly from working groups tsvwg [11]
and pilc [12]). The HTTP transport over a wireless link has
not yet been addressed in IETF but practical proposals are
available [13], [14]. For XML the situation is even worse.
The WAP forum has proposed a binary XML format [15] but
that addresses only the efficient presentation of tags. Recently1

W3C held a workshop on XML Binary Infoset [16] to review
needs of alternative wire formats.

III. RESEARCH CHALLENGES IN WIRELESS INTERNET

Based on the vision of adaptive, context-aware, personalized
applications we have formulated three fundamental questions:

1) Do the current operating systems support transparent and
seamless reconfigurability?

2) Are the current programming models and tools adequate
for context aware applications?

3) Do the current middleware solutions support develop-
ment of such applications?

Unfortunately the answer to each of the three questions
above is negative. Our current legacy base does not support
adaptive, context-aware, personalized applications.

The operating systems claim to support plug and play func-
tionality. However, more than often you end up in rebooting
your system that can take several minutes. If you execution
context is changing more rapidly than you can reboot your
system, then you have a useless system.

Current programming models assume that exceptions are
rare and independent from each other. However, the usual
situation in reconfigurable systems will be that the situations
currently regarded as exceptions will be the usual case. Almost
never you will have the “full system” available; some parts
will be unavailable, some parts will be only partial available.
In such cases the try-catch statement will be insufficient to
capture the real-world situation to which the system tries to
adapt itself.

In order to address the requirement of ever-faster service
and application development and deployment, several ser-
vice/application frameworks/platforms have been introduced,
usually referred as middleware. The current mainstream
of middleware is based on the object-oriented client/server
paradigm. However, the emerging personal networking re-
quires a different paradigm that takes event-based reflective
middleware into account.

In order to get a roadmap for turning the three no-answers
to yes-answers, we have identified six fundamental research

1September 24–26, 2003, in Palo Alto, Calif.

areas: reconfigurable systems, context modeling, security-trust-
privacy, software development and maintenance, programming
models, and efficient wireless connectivity. This set is by no
means the only possible division of the Wireless Internet
research space. The selected areas are neither orthogonal in
the sense that solutions in one area affect solutions in other
areas. Same or similar research topics and issues appear in
more than one research area. Other divisions of the Wireless
Internet research space can be found in [1]–[7], [17]–[21].

A. Reconfigurable Systems

Recent developments in mobile communication and small
computing devices have had a tremendous impact on soci-
ety. They have brought the dream of ubiquitous or invisible
computing and communication closer to reality. Already in the
near future communication and computing devices will be in a
state that technologically enables mass market scale ubiquitous
services and applications. Therefore, the main challenge will
be software that fulfils the needs of adaptive, context-aware,
personalized services and solutions.

The end-user devices of today are primarily integrated units
like PDAs, laptops, or mobile phones. However, the situation
will change in the future. The successor of the current mobile
phone, or at least the successor of its successor, will be quite
different. It will not disappear or lose its importance but its
role will be very different.

A personal trusted device, we call it as FuturePhone, will
be the core of the personal networking system. It probes
its surrounding looking for suitable peripheral devices such
as displays, input devices, processors, fast access memories
and access points to communication channels. It dynami-
cally builds up the most appropriate end-user system that
can be auto-configured. The FuturePhone also probes for
other similar devices in order to establish suitable ad-hoc
communities and different kinds of sensors in order to extract
context information associated to the current smart place. The
FuturePhone also tries to detect actuators provide the means
to affect properties of the smart place.

In order to be able to construct an end-user system and
ad-hoc communities according to user preferences several
enabling technologies must be available. First of all the system
needs to be self-aware or reflective. This implies that the
system must have a conceptual model of its current state and
configuration as well as that of user preferences; see also
Section III-B.

Configuration management is one enabler of reconfigura-
bility. The best-known configuration descriptions today for
wireless devices are W3C’s CC/PP [22] and OMA’s UAProf
[23]. Both of them concentrate on terminal capabilities and
cannot easily handle dynamic changes. They are based on
W3C’s RDF [24], but in serialization CC/PP uses XML
[25] and UAProf WBXML [15]. FIPA’s Quality of Service
Specification [26] provides definition of an ontology describ-
ing message transport. FIPA includes also Device Ontology
Specification [27]. In addition, OMA has on-going work
on Device Management [28] service enabler. In describing
software configurations CORBA Component Model [29] and



KIMMO RAATIKAINEN 5

J2EE [30] use XML format. The on-going work in W3C’s
Device Independence Activity [31] is a part of configuration
management, although the work is just in its beginning2.

Another part of configuration management is the mainte-
nance of ad-hoc communities. This membership management
is the key challenge in group communication that has a
plethora of non-standard solution proposals from the research
community since the 70s; see, e.g., [33]. Here the challenge
is in combining recent developments in IP and middleware
level multicast with light-weight conceptual model of dynamic
configurations.

Detection mechanisms, that is finding new devices, detect-
ing devices that have departed or changed their state, are
mandatory enablers of reconfigurability. But we also need
notification delivery with filtering. Filtering is a way we
can implement rules for deciding which events are important
enough to be notified to the platform and applications.

Research and development in detection has been intensive.
There are also good solutions for asynchronous notifications.
Available service discovery mechanisms include IETF’s Ser-
vice Location Protocol (SLPv2) [34], Jini [35], OMG’s Trad-
ing Object Service [36], Universal Description, Discovery and
Integration of Business for the Web (UDDI) [37], Salutation
[38] and Universal Plug and Play (UpnP) [39]. In addition,
Bluetooth provides its own Service Discovery Protocol [40].
The proposed approaches work fine in their own environments.
Therefore, the challenge is to obtain interworking, not to
specify a brand new unified solution.

The next step should be focused on decision rules for
reconfiguration. When our system has detected a change in the
system state, it must decide whether or not some adjustments
are needed. Dynamic system control theory is quite advanced
for continuous systems [41]. Discrete systems are harder to
control. However, we need to be ready to tackle multidimen-
sional mixed models.

One additional aspect of reconfiguration is software down-
load and upload as well as on-line upgrades and rollbacks.
Recent virus attacks have clearly demonstrated that reconfig-
urable systems need strong protection against faulty, malfunc-
tioning, even hostile software. The security of a reconfigurable
system must be addressed as a whole, from hardware support
to application software; see Section III-C for details.

B. Context Modeling

Context-awareness is considered as a fundamental property
of future mobile applications to provide rich and consistent
user experience. Context in the sense of computing refers
to the physical and social situation in which computational
devices are embedded.

Almost any piece of information available at the time of
interaction can be seen as context information: identity, spatial
information (e.g., location, orientation, speed and accelera-
tion), temporal information (e.g., time of the day, date, and
season of the year), environmental information (e.g., tempera-
ture, air quality, and light or noise level), social situation (e.g.,

2W3C Working Group Note on Device Independence Principles [32] was
published in September 2003.

who are you with, and people that are nearby), resources that
are nearby (e.g., accessible devices, and hosts), availability
of resources (e.g., battery, display, network, and bandwidth),
physiological measurements (e.g., blood pressure, hart rate,
respiration rate, muscle activity, and tone of voice), activity
(e.g., talking, walking, and running), schedules and agenda
settings.

Context-awareness means that one is able to use context in-
formation. A system is context-aware if it can extract, interpret
and use context information and adapt its functionality to the
current context of use.

The grand challenge is to create a flexible context model-
ing framework. The objective is to have efficient means of
presenting, maintaining, sharing, protecting, reasoning, and
querying context information. It should be noted that different
applications in use typically have different views of context
information. Therefore, also distributed data management is
an essential enabler for context-aware applications.

In system modeling UML [42] from OMG is the lingua
franca. More recently OMG has introduced Model Driven Ar-
chitecture (MDA) [43] to raise the abstraction level. In MDA,
Platform Independent Models (PIMs) are used to provide a
resource model including properties, capabilities and relations.
See also Section III-D for additional discussion on MDA.

In W3C the modeling is addressed in Web Services (Web
Services Description Language (WSDL) Version 1.2 [44])
and in Semantic Web (RDF [24] and OWL Web Ontology
Language [45]). Some aspects are also addressed in Organiza-
tion for the Advancement of Structured Information Standards
(OASIS) [46], particularly in Universal Description, Discovery
and Integration [37].

The challenge is how modeling approaches and tools, all of
which have their merits and strong industrial support, can be
used in a coherent way for the conceptual models needed in
future systems. One may try to combine them, but that could
end-up in an overwhelmingly complex and heavy-weight tool
set. A more plausible solution can be based on suitable model
transformations. An ultimate alternative is do develop a brand-
new “universal modeling language”.

C. Security, Trust and Privacy

The success of the Wireless Internet will totally depend
on consumers’ trust. Current Internet is vulnerable to worms,
viruses, spam and fraud. It clearly demonstrates that fix it later
does not work. Security, trust and privacy must be addressed
from the very beginning of system design and on all levels:
hardware, operating system, protocols, middleware. Moreover,
trust is not of type on-off. Different tasks need different level
of trust. In addition, different persons require different level
of trust for the same task.

Today game applications have direct access to display
processors or accelerators. When these devices become direct
memory access (DMA) enabled, applications can overwrite
operating system kernel unless each memory access goes
through a protected address translation. Similarly, any digital
rights management and payment system is of little use if a
display driver stores the uncrypted video signal.



6 A NEW LOOK AT MOBILE COMPUTING

Trusted Computing Group [47] works on open industry
standard hardware building block and software interface spec-
ifications. The group has published Trusted Platform Module
(TPM) Specification and TCG Software Stack (TSS) Specifi-
cation.

An identity infrastructure is also needed to assure the
coupling of the FuturePhone with the user in a distributed
fashion. Preferences, attributes and desires are characteristics
that discern an individual and represent his or her identity.
The future Internet will be a web of relationship between
different identities that must be trusted and accepted. The
Liberty Alliance consortium [48] is specifying an architecture
to enable federated network identity management.

Research issues in the “Bermuda triangle” of security, trust
and privacy include:

� protecting system against unauthorized modifications,� program validation/verification (what an
uploaded/downloaded piece of software really does),� trust modeling,� how fragments of information can be efficiently shared
in a controlled manner,� key/certificate management, and� implications of ad-hoc communities (what can be done
without trusted servers).

D. Software Development and Maintenance

Software crisis has been a repeating theme in software
engineering literature since NATO workshops 1968 [49] and
1969 [50]. At least once in decade we have read that pro-
duction of software artifacts has serious problems. Since the
seminal work of Fred Brooks Jr. [51] the silver bullet3 has
been the magical target that will help us to increase the
productivity in software development. In the wireless world
we meet all the problems of traditional software engineering.
In addition, we must take into account restricted resources—
power consumption, in particular—of handheld devices.

Already in the early days of software business in the 60s
and 70s the problems of programming were addressed by
proposing use of high-level languages, structural program-
ming, functional decomposition, information hiding, etc. By
early 80s most problems of writing one-man programs were
solved, but software problems were still there; now on the
next level of complexity. This was primarily due to applying
computing to solve problems magnitudes larger and harder
than in the 70s.

During the years object-orientation, functional program-
ming, aspect-orientation, rapid prototyping, among others,
have been claimed to be the breakthrough in the software
challenge. Through all the years modeling has been one of
the most advocated candidates. The modeling proposals have
varied a lot over the time. The most recent proposal is the
Model-Driven Architecture or MDA [43] by OMG. In most
solutions automation is considered as the key enabler. This
is not surprising since automation is the essence of computer
science.

3According to Bookrs Jr. Silver Bullet is a technique or methodology that
improves software productivity by factor ten.

In many papers addressing the software challenge pro-
duction of software is equated to industrial manufacturing
process. I am quite sure that this metaphor is not a proper
one. In manufacturing repetition is the core challenge. You
have the form to create replicas and your challenge is how
to produce a great number of similar artifacts. In software
production the creation of replicas is not a problem. When
you have the master copy, then it is trivial to create copies
with almost zero cost. Therefore, traditional manufacturing
as software development metaphor is fundamentally wrong.
Software development is inherently a design activity with no
aspect of construction or manufacturing. The diseconomy of
scale we see in software development is inherent to its design
nature. We know from other industries that economies of
scale apply only to manufacturing processes but not to design
tasks. Accoprding to Hans Buhrer [52] ”In a world where
construction and demolition are free, trial and error is the
approach of choice, and basic research is for suckers.”

The promise of the Model-Driven Architecture is “to
move away from technology-specific code, helping to insulate
business applications from technology specifics”. [43] The
MDA advocates promise easy software development through
modeling. The only thing you need to do is to model your
business processes. The rest is given “free” by MDA tools that
generate the running code. This seems to be a similar silver
bullet for software development as those proposed in the 70s,
80s, and 90s, but that did not work in practice4. However,
we should not reject the MDA approach solely based on the
unrealistic marketing hype. Behind the MDA there are many
sound ideas and methodologies that need to be brought into a
proper context, but we need to recognize its limitations. David
Parnas’ argumentation against SDI [54] is also valid against
MDA. If we have never before done anything similar, we do
not have any means to verify that we got it right at the first
time. Therefore, MDA is useful but limited to specific domains
where we have enough domain knowledge.

The service or software architecture is the fundamental
challenge for the Wireless Internet. It is the key factor for the
success of a software project. The inability to routinely create
a good architecture is exactly what sets software development
apart from established engineering disciplines. Architecture
moves the focus of of a software developer from lines of code
to components and their interconnections.

Without a conceptually coherent architecture it will be
extremely hard or even impossible to achieve future-proof
solutions. The hardest challenge is to have the right level of
details: not too summary, not too detailed. If there are not
enough detail, then we end up in an interoperability nightmare.
On the other hand, if we go into too much details in the
architecture, then we kill innovation and prevent progress.

The goal of the service architecture is to obtain a sustainable
modular framework so that any module, at least in principle,
can be replace without disturbing the others. Another goal—
perhaps even more important—is to clarify thinking so that
we do not mix apples and oranges. The crucial role of service
architecture can be seen in the worldwide interest in service

4See Chapter 17 “No Silver Bullet” Refired in [53].



KIMMO RAATIKAINEN 7

(a) OMA Architectural Framework (b) Overall WWRF Reference Model

Fig. 3. Architectural Frameworks

architectures for the fourth generation systems or the systems
beyond the third generation.

Service and software architectures are currently under wide
development. Wireless World Research Forum (WWRF) [7]
has come up with an architectural framework. In addition,
architecture-related work has been carried out in Open Mobile
Alliance (OMA) [55]. There are also regional activities like
mITF [56] in Japan. Moreover, the industry—NTT DoKoMo
[57] and Nokia [58], for example—has contributed its propos-
als to various forums.

The architectural framework of OMA (Fig. 3(a)) highlights
the end-to-end view. The OMA framework is a logical ar-
chitecture that does not propose any specific topology or
physical location of servers. Furthermore, it does not suggest
any hierarchy of protocol stacks to be used between domains.
Network Infrastructure consists of the mobile network infras-
tructure that provides basic connectivity, transport and mo-
bility support. Terminal and Server Application Platforms are
the middleware solutions that are not application-specific. A
platform contains functionality that can be shared by multiple
applications running either in the terminal or on the server.

The service architecture developed in the Wireless World
Research Forum is based on an I-centric approach. Future
services will adapt to individual requirements implement-
ing mass-market scale personalization. Fig. 3(b) outlines the
WWRF architectural framework for I-centric communication.
On top of the framework the values plane defines the interests
of human end-users. The capabilities plane further elaborates
functionalities needed in applications to fulfill those interests.
The mobile middleware (Fig. 4(a)) provides a basic set of
Generic Service Elements as well as Distributed Execution
Environment. The Internet Protocol Suite (Fig. 4(b)) is the
basis of an all IP-based communication system as the under-
lying communication infrastructure. It can reside on both fixed
and wireless networks, where various access technologies can
be used to attach different communication devices and end-
systems to the wireless world.

E. Programming Models

The current mainstream of middleware is based on the
object-oriented client/server paradigm. The prime examples of
object-oriented middleware (OOM) are OMG’s CORBA [59],
Sun’s Java 2 Enterprise [30], Standard [60] and Micro [61]
Editions, and Microsoft’s .NET Framework [62].

Another branch of middleware is based on message oriented
middleware (MOM). Today, the difference between MOM and
OOM is not so obvious. CORBA has one-way operations,
Event Service [63], and Notification Service [64]. In the Java
world Java Message Service (JMS) [65] and Sun Microsys-
tems’ Java System Message Queue [66] can be used for asyn-
chronous messaging. The major MOM productions include
IBM’s WebSphere MQ [67], Microsoft Message Queuing
(MSMQ) [68], Bea Systems’ MessageQ [69], and TIBCO’s
ActiveEnterprise (including TIBCO Rendezvous) [70]. Open
Source alternatives include ObjectWeb’s JORAM [71] and
xmlBlaster [72].

The emerging personal networking, however, requires a
different approach that also takes into account paradigms of
event-based and reflective middleware. Future mobile applica-
tions will be context-aware, adaptive and personalized. There-
fore, the applications need to react to changes in execution
environment. They must also modify their behaviour and/or
configuration. Fig. 5 depicts a high-level structure of future
mobile applications. The world model represents the state
variables of interest. The preferences/capabilities defines the
wishes of the user and the needs of the application. The set
of interests defines the events that the application is interested
in.

One of the fundamental problems is that of exceptions or
try-catch statements in the current programming languages.
In the future when systems and applications are adaptive,
context-aware, and re-configurable, the usual situation will be
that something exceptional is always going-on. Moreover, the
situations currently covered by the catch-clause will not be
independent. In other words, each try-statement will usually



8 A NEW LOOK AT MOBILE COMPUTING

(a) Mobile Middleware (b) Internet Protocol Suite

Fig. 4. Detailed WWRF Reference Model

catch more than one exception. In these situations programs
implemented using try-catch statements will be unreadable,
“write-only” code.

Therefore, we need to go to the basics of programming
models and languages. We need ways to express compensating
actions and delayed actions. We may also need the condition-
action programming model: to specify conditions under which
each action is to be launched. This is nothing new for the
students of computer science in late 70s and early 80s. We only
need to bring back the basic ideas of Dijkstra [73] and Hoare
[74] and to adjust them to current needs and technologies.
The survey by Bal, Steiner and Tanenbaum [75] gives a good
overview of programming languages proposed for distributed
processing until late 80s.

In Dijkstra’s Guarded Commands each guarded list is
protected by a Boolean expression without side effects. For
reactive systems we would like to generalize a program in
simplified BNF:

<program> ::= <guarded action>+
<guarded action> ::=

<event clause> -> <action>;
<action> ::= <statement> {; <statement>}*

The above looks very similar to Dijkstra’s original proposal.
However, we believe that the execution semantics needs to be
relaxed a lot. The program runs until an explicit terminate
statement is executed. Each action whose event clause is
satisfied is executed in its private address space. When all
the actions are completed, then the private address spaces are
merged with the shared address space. Possible conflicts are
resolved by the given conflict resolver for each data item.
Finally, all the events generated by the actions are published
in the underlying event system.

An alternative implementation could be as follows. All the
statements belonging to actions whose event clause (condition)
is satisfied are collected to an execution set. The execution set
is examined for conflicts that are resolved before execution.
The whole execution set (after conflict resolution) is executed

Fig. 5. High-level Structure of Future Mobile Applications.

as an atomic action.
The complexity of the execution semantics is due to the fact

that we do not want to restrict the actions to be without side
effects. That would significantly reduce the flexibility of the
programming languages. In addition, we want that all actions
fired by an event are executed instead of an arbitrary one as
in Dijkstra’s guarded commands and in its follow-ups such as
CSP [76].

One could argue that event handlers in the current GUI
systems are similar to our proposal. There are, however,
significant differences. In GUI systems, there is only one
subscriber for each event type. In addition, compound events
lack support.

We have not yet addressed the event clauses. Typically they
will include statements about a change in value of context
variables. Below are three simple examples:

When I leave my office
When any of my buddies comes close
When my wife arrives our home



KIMMO RAATIKAINEN 9

In other words, the event clauses are often personalized and
utilize non-elementary semantics.

Applications based on the client-server paradigm are useful
and widely used, but they are problematic in an ad-hoc
community. In particular, most infrastructure services specified
for 3G are based on the client-server paradigm. If we want
future small wireless devices to work seamlessly in both envi-
ronments, we need to find out how client-server applications
are efficiently implemented for ad-hoc communities.

When infrastructure services are not available, then the
server functionality must be distributed among the members of
the community in order to achieve robustness against leaving
members. Therefore, the “server” needs to be distributed
among all members of the ad-hoc community. Here, an im-
portant challenge is the management of a distributed state.

In principle, the ad-hoc community could select one of its
members as the server. In some cases this is a reasonable
and easy solution but not a robust one. The feasibility of the
“selected server” solution depends on recovery requirements.
First of all, the application must have a soft state so that
the new selected server can rebuild the application state from
the scratch. Secondly, the timeliness requirement must be so
loose that the application can wait until the soft state has been
reconstructed.

Yet another research issue of fundamental importance
is fault-tolerance. Replication, which is a commonly used
method to achieve fault-tolerance in traditional distributed
systems, is not alone sufficient. We cannot replicate everything
onto a small handheld device. In principle, the baseline appli-
cations must remain operational, at least in a tolerable manner,
even if some services of the underlying execution environment
cannot be utilized. An alternative is that the application detects
that it cannot make any progress and terminates or suspends
itself. In any case the application cannot remain hanging and
block all useful actions.

The programming model must have ways to express de-
layed and compensating actions to overcome the missing
functionality in a partially available system. Disconnected
operations and intelligent synchronization after reconnection
are other important features to be supported. In addition,
atomic transactions as used, for example, in the Argus system
[77] may be needed in recovery from runtime failures.

To conclude, future context-aware, adaptive and personal-
ized applications need an alternative programming model in
addition to the currently dominating client/server paradigm.
Essential features of such a programming model include
condition-action style of programming, efficient access to
context variables, lightweight state distribution among peers
and a new approach to fault-tolerance.

F. Efficient Wireless Connectivity

As a communication channel, air is problematic. In the last
ten years the progress in coding has significantly increased
the capacity of wired channels. Unfortunately these fruits
cannot fully be utilized on wireless channels. The applied
coding is always a compromise between information density
and redundancy providing robustness against interference. The

basic problem with wireless links is instability in the sense that
the level of interference varies in time and place, and according
to environmental conditions.

It is very often said that the speed of 2 megabits per second,
which is assumed to be available in the 3G, will be fast enough
(or the tens of Mbits/s promised in 4G). However, in the
history of computing, the spare capacity has never been left
unused. In addition, one should notice that the capacity and
speed of wired connections has increased much faster. For
each magnitude of improvement in wireless communications
there has been an improvement of 2-3 magnitudes in wired
communications.

The problems of wireless links are not uniform. We have
wireless LANs, satellite links, cellular networks, and short-
range radio links. Each poses specific problems of its own.
Therefore, wireless communications must be regarded as a
polymorbid patient. Each of the access technologies mentioned
above differs, at least in some aspect, from the others.

The support system of a nomadic user must be able to
support communication links of different kinds. It must en-
force the higher layers of communications to adapt to the
situation at hand. However, the adaptation of communication
is not sufficient, the behavior of applications also needs to be
adapted.

Despite recent developments, we still have a lot to do in
communication protocols:� On the link layer we should examine adaptation to

varying physical conditions.� On the network layer we need seamless co-operation
between mobility mechanisms, Quality-of-Service solu-
tions, and security.� On the transport layer we must find solutions for multiple
simultaneous flows and different transport protocols.� On the presentation layer we need bit-efficient wire
formats.

In addition, we must also address cross-layer interferences and
co-operation. In summary, we must have a reasonable solution
on each layer since the performance can be destroyed on each
layer. Anecdotically, when the protocol guys have improved
one layer for mobile communications, the application guys
have introduced two new layers that nullify the enhancements
of the protocol guys. Java RMI is currently my favorite
example of destroying the transport performance; for details,
see [78], [79].

Additional research issues in (wireless) communications
include:� implications of ad-hoc networking,� group communication,� multicast and multihoming, as well as� management of personal, session, and (sub)network mo-

bility.

IV. CONCLUDING REMARKS

It is time to reconsider the fundamentals of computer
science and how they are applied in systems and applications
for Wireless Internet. We have identified six key research chal-
lenges: reconfigurable systems, context modeling, security-
trust-privacy, software development, programming models,



10 A NEW LOOK AT MOBILE COMPUTING

and efficient always-on connectivity.. We do not claim that
our division is the best one, but it is plausible. Alternative
divisions of the mobile research space have been presented in
various vision papers [1]–[7], [17]–[21]

Some important issues—although they are present as re-
search areas in our research challenges—may have not re-
ceived the attention they deserve. Such issues include mobile
data management, and light-weight distributed management
of state. In Open APIs we meet the cross-over problem of
implementing same interfaces both in hardware and software.

TO conclude, a lot, as identified in the research challenge
section, is still to be done to make the “always on” vision

of nomadicity, ubiquity, and pervasivity a reality.

ACKNOWLEDGMENT

During the last ten years I have had the priviledge to work
with excellent colleagues and students as well as interesting
partners in various European projects. Therefore, the list of
persons I should acknowledge would be enormous. Instead, I
only mention a few and apologize to the rest.

First of all I need to thank Timo Alanko for inviting me to
the Mowgli-group and for many interesting and fruitful dis-
cussions during the years. Heimo Laamanen (now TeliaSonera;
previously Sonera and Digital Equipment Corp.) and Heikki
Saikkonen (Nokia Research Center) have been our reliable
but demanding industrial mentors. My project managers—
Markku Kojo, Oskari Koskimies, and Sasu Tarkoma—have
contributed a lot, as well as my recent Ph.D.s: Heikki Helin,
Stefano Campadello, Jukka Manner, and Andrei Gurtov. In
addition, Mika Liljeberg, Jarkko Sevanto, Pauli Misikangas,
Jaakko Kangasharju, and Pasi Sarolahti have had significant
roles in our projects.

The international co-operation has had its impact. Randy
Katz (UC Berkeley), Sebastiano Trigila (FUB, Italy), Sergio
Palazzo (U. Catania, Italy), Dave Wisely (BT Exact, UK),
Lazaros Merakos (U. Athens, Greece), and Hamid Aghvami
(KCL, UK) have provided useful insight.

REFERENCES

[1] M. Weiser, The Computer for the Twenty-First Century, Scientific
American, September 1991. pp. 94–104.

[2] M. Weiser, Some Computer Science Issues in Ubiquitous Computing,
Communications of the ACM, July 1993. pp. 74–84.

[3] R. Bagrodia, W. W. Chu, and L. Kleinrock, Vision, Issues, and Ar-
chitecture for Nomadic Computing, IEEE Personal Communications,
December 1995. pp. 14–27.

[4] Cross-Industry Working Team, Nomadicity in the NII, Available at
http://www.lk.cs.ucla.edu/LK/lkxiwt/.

[5] M. Satyanarayanan, Pervasive Computing: Vision and Challenges, IEEE
Personal Communications, August 2001. pp. 10–17.

[6] K. Ducatel et al., Scenarios for Ambient Intelligence in 2010, Technical
report, ISTAG, February 2001.

[7] Wireless World Research Forum, Book of Visions 2001, http://www.
wireless-world-research.org/.

[8] T. Alanko, M. Kojo, H. Laamanen, M. Liljeberg, M. Moilanen, and
K. Raatikainen, K., Measured Performance of Data Transmission over
Cellular Telephone Networks, Computer Communications Review, Oc-
tober 1994. pp. 24–44.

[9] R. Cáceres, and L. Iftode, Improving the Performance of Reliable
Transport Protocols in Mobile Computing Environments, IEEE Journal
on Selected Areas in Communications, June 1995. pp. 850–857.

[10] M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko,
An Efficient Transport Service for Slow Wireless Telephone Links,
IEEE Journal on Selected Areas in Communications, September 1997.
pp. 1337–1348.

[11] IETF TSVWG home page. http://www.ietf.org/html.
charters/tsvwg-charter.html.

[12] IETF PILC WG home page. http://pilc.grc.nasa.gov/
pilc/.

[13] M. Liljeberg, H. Helin, M. Kojo, and K. Raatikainen, Mowgli WWW
software: Improved usability of WWW in mobile WAN environments,
Proceedings IEEE Global Internet 1996 Conference, 1996. pp. 33–37.

[14] B. Hausel, and D. B. Lindquist, WebExpress: A System for Optimizing
Web Browsing in a Wireless Environment, Proceedings of MobiCom
1996. pp. 108–116.

[15] WAP Forum, WAP Binary XML Content Format, Document id WAP-
192 105-WBXML-20011015-a.

[16] M. Leventhal, E. Lemoine, and S. Williams, Binary Showdown, XML
Journal, Vol. 4, Issue 11, November 2003.

[17] A. J. Demers, Research Issues in Ubiquitous Computing, Proceedings
of ACM PODC’94, August 1994. pp. 2–8.

[18] M. Satyanarayanan, Fundamental Challenges in Mobile Computing,
Proceedings of ACM SigMobile, April 1997. pp. 1–7.

[19] G. Banavar et al., Challenges: An Application Model for Pervasive
Computing, Proceedings of MobiCom 2000, August 2000. pp. 266–274.

[20] L. Kleinrock, Breaking Loose, Communications of the ACM, September
2001. pp. 41–45.

[21] R. Katz, Adaptation and Mobility in Wireless Information Systems,
IEEE Personal Communications Magazine, Vol. 1, No. 1, 1st Quarter,
1994. pp. 6–17. Reprint in IEEE Communications Magazine, May 2002.
pp. 102–114.

[22] W3C, Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies, W3C Working Draft, 25 March 2003.

[23] OMA User Agent Profile Version 2.0, http://www.
openmobilealliance.org/documents.html.

[24] W3C, Resource Description Framework (RDF), http://www.w3.
org/RDF/.

[25] W3C, XML Information Set, W3C Recommendation, 24 October 2001.
[26] FIPA Quality of Service Specification, FIPA document number

SC00094A, December 2002.
[27] FIPA Device Ontology Specification, FIPA document number

SC00091E, December 2002.
[28] OMA Device Management Version 1.1.2, http://www.

openmobilealliance.org/documents.html.
[29] CORBA Component Model, v 3.0, OMG document formal/2002-06-05,

June 2002.
[30] Sun Microsystems, Java 2 Platform, Enterprise Edition (J2EE), http:

//java.sun.com/j2ee/.
[31] W3C Device Independence Activity, http://www.w3.org/2001/

di/.
[32] W3C, Device Independence Principles, W3C Working Group Note, 01

September 2003.
[33] G. V. Chockler, I. Heidar, and R. Vitenberg, Group Communication

Specifications: A Comprehensive Study, ACM Computing Surveys, De-
cember 2001. pp. 427–469.

[34] Service Location Protocol, Version 2, IETF RFC 2608.
[35] Sun Microsystems, Jini Network Technology, http://wwws.sun.

com/software/jini/.
[36] Trading Object Service Specification, OMG document formal/2000-06-

27, June 2000.
[37] OASIS UDDI Specification: Universal Description, Discovery

and Integration of Business for the Web, (UDDI Version 3),
http://www.oasis-open.org/committees/uddi-spec/
doc/tcspecs.htm.

[38] Salutation, http://www.salutation.org/.
[39] UPnP Forum, Universal Plug and Play, http://www.upnp.org/.
[40] Bluetooth Service Discovery Protocol, https://www.bluetooth.

org/spec/.
[41] T. Glad and L. Ljung, Control Theory, Multivariable and Nonlinear

Methods, Taylor and Francis, 2000.
[42] Unified Modeling Language (UML) Specification 1.5, OMG document

formal/2003-03-01, March 2003.
[43] OMG, Model Driven Architecture, http://www.omg.org/mda/.
[44] W3C, Web Services Description Language (WSDL) Version 2.0, Two

W3C Working Drafts, 10 November 2003.
[45] W3C, OWL Web Ontology Language, A set of W3C Candidate Recom-

mendations, 18 August 2003.



KIMMO RAATIKAINEN 11

[46] Organization for the Advancement of Structured Information Standards
(OASIS), http://www.oasis-open.org/home/index.php.

[47] Trusted Computing Group, https://www.
trustedcomputinggroup.org.

[48] Liberty Alliance Project, http://www.projectliberty.org/.
[49] P. Naur and B. Randell, (Eds.) Software Engineering, Scientific Affairs

Division, NATO, 1969. Available at http://homepages.cs.ncl.
ac.uk/brian.randell/NATO/nato1968.PDF

[50] B. Randell and J.N. Buxton, (Eds.) Software Engineering
Techniques, Scientific Affairs Division, NATO, 1970. Available
at http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/nato1969.PDF

[51] F. P. Brooks, Jr., No Silver Bullet: Essence and Accidents of Software En-
gineering, In Information Processing 86, IFIP/Elsevier, 1986. pp. 1069–
1076. Reprint in IEEE Computer Magazine, Vol. 20, No. 4, April 1987,
pp. 10–19.

[52] H. K. Buhrer, Software Development: What it is, What it should be, and
How to get There, ACM SIGSOFT Software Engineering Notes, March
2003. pp. 1–4.

[53] F. P. Brooks, Jr., The Mythical Man-Month, 20 Anniversary Edition,
Addision-Wesley, 1995.

[54] D. L. Parnas, Software Aspects of Strategic Defense Systems, Commu-
nications of the ACM, December 1985. pp. 1326–1335.

[55] Open Mobile Alliance, http://www.openmobilealliance.
org/.

[56] Mobile IT Forum, http://www.mitf.org/index_e.html.
[57] H. Yumiba, K. Imai, and M. Yabusaki, IP-Based IMT Platform, IEEE

Personal Communications, October 2001. pp. 18–23.
[58] Nokia, Mobile Internet Technical Architecture, Parts 1-3, ISBN 951-

826-671-9, IT Press, 2002.
[59] Common Object Request Broker Architecture (CORBA/IIOP), OMG

document formal/2002-12-06, December 2002.
[60] Sun Microsystems, Java 2 Platform, Standard Edition (J2SE), http:

//java.sun.com/j2se/.
[61] Sun Microsystems, Java 2 Platform, Micro Edition (J2ME), http:

//java.sun.com/j2me/.
[62] Microsoft, .NET Framework, http://www.microsoft.com/

net/.
[63] OMG, Event Service Specification, OMG document formal/2001-03-01,

March 2001.
[64] OMG, Notification Service Specification, OMG document formal/2002-

08-04, August 2002.
[65] Sun Microsystems, Java Message Service, (JMS) http://java.

sun.com/products/jms/.
[66] Sun Microsystems, Sun Java System Message Queue, http:

//wwws.sun.com/software/products/message_queue/
index.html.

[67] IBM, WebSphere MQ, http://www.ibm.com/software/
integration/wmq/.

[68] Microsoft Message Queuing, (MSMQ) http://www.microsoft.
com/windows2000/technologies/communications/
msmq/default.asp.

[69] Bea Systems, MessageQ, http://www.bea.com/framework.
jsp?CNT=index.htm&FP=/content/products/more/
messageq/.

[70] TIBCO, ActiveEnterprise, http://www.tibco.com/
solutions/products/default.jsp.

[71] ObjectWeb Consortium, JORAM, http://joram.objectweb.
org/.

[72] xmlBlaster.org, Open Source for MOM, http://www.
xmlblaster.org/.

[73] E. W. Dijkstra, Guarded Commands, Nondeterminacy and Formal
Derivation of Programs, Communications of the ACM, August 1975.
pp. 453–457.

[74] C. A. R. Hoare, Communicating Sequential Processes, Communications
of the ACM, August 1978. pp. 666–677.

[75] H. E. Bal, J. G. Steiner and A. S. Tanenbaum, Programming Languages
for Distributed Computing Systems, ACM Computing Surveys, Septem-
ber 1989. pp. 261–322.

[76] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall,
1985.

[77] B. Liskov, Distributed programming in Argus, Communications of the
ACM, March 1988. pp. 300–312.

[78] S. Campadello, H. Helin, O. Koskimies, and K. Raatikainen, Perfor-
mance Enhancing Proxies for Java2 RMI over Slow Wireless Links,
Proceedings of the Second International Conference and Exhibition on
The Practical Application of Java (PA JAVA2000), Manchester, UK, 12-
14 April 2000.

[79] S. Campadello, H. Helin, O. Koskimies, and K. Raatikainen, Wireless
Java RMI, Proceedings of the 4th International Enterprise Distributed
Object Computing (EDOC2000), September 2000.

Kimmo Raatikainen Prof. Kimmo Raatikainen has
M.Sc. (1983) and Ph.D. (1990) degrees in computer
science (University of Helsinki). He was a system
manager at Finnish State Computer Centre, Division
of University Support, 1981–1985. From 1986 he
has been employed by Helsinki University Computer
Science Department as a research and teaching as-
sistant, as an Assistant Professor, as an Associated
Professor and as a Full Professor (from 1998). From
January 2000 he as been part-time Principal Scientist
(and Research Fellow from April 2004) in Nokia

Research Center and from January 2002 also part-time Principal Scientist
leading the Mobile Computing research area in the Helsinki Institute for
Information Technology, which is a joint research institute of the University
of Helsinki and the Helsinki University of Technology. Prof. Raatikainen has
participated in a leading role several European projects including DOLMEN
(AC036), MONTAGE (AC325), PRIME (AC370), HPGIN (ESPRIT 29737),
BRAIN (IST–1999–10050), CRUMPET (IST–1999–20147), MIND (IST–
2000–28584). He has also led several national research projects (funded by
National Technology Agency of Finland—TEKES—and industry) on mobile
computing, wireless communication, middleware for mobile computing and
on telecommunications software architectures. His current research interests
include wireless communication, middleware for mobile distributed systems,
and operating systems. He has over 100 scientific publications in these areas.
He has supervised 7 Ph.D. thesis and c. 90 M.Sc thesis. Currently 19 Ph.D.
students are conducting their thesis under his supervision. Prof. Raatikainen
has actively participated in OMG since 1997 leading in the Telecom DTF
the specification of Wireless Access and Terminal Mobility in CORBA. He is
also the representative of the university at W3C advisory board and national
delegate in the ESF MiNEMA project.


