
Service advertisement and

discovery technologies enable

device cooperation and reduce

configuration hassles, a

necessity in today’s increasingly

mobile computing

environments. This article

surveys five competing but

similar “service discovery

suites” and looks at efforts to

bridge the technologies.

Service Advertisement
and Discovery:
Enabling Universal Device Cooperation

GOLDEN G. RICHARD III
University of New Orleans

Computer users increasingly face the management of many comput-
ing devices. One reason is the expansion of computing environments
in the home and office, as printers, scanners, digital cameras, and

other peripherals are integrated into networked environments. Another rea-
son is the proliferation of mobile devices such as laptop and palm-sized com-
puters, cellular phones, and pagers. Because these devices trade functional-
ity for suitable form factors and low power consumption, they are necessarily
“peripheral-poor” and must therefore establish connections to neighboring
devices for storage, faxing, high-speed network access, and printing.

It is easy to become frustrated when dealing with the configuration and
interaction of such a multitude of devices. Service discovery technologies
were developed to reduce this frustration and to simplify the use of mobile
devices in a network by allowing them to be “discovered,” configured, and
used by other devices with a minimum of manual effort.

This article briefly surveys five of the leading technologies in this area.
Table 1 lists the features of each technology. Although most of these “service
discovery suites” promise similar functionality—namely, reduced configu-
ration hassles, improved device cooperation, and automated discovery of
required services—they come at the problem from different philosophical
and technical approaches. Since none of these technologies is a superset of
the others and none is mature enough to dominate the market, interoper-
ation among them will require bridging mechanisms. The survey concludes
with a review of some developments in this area.

BLUETOOTH: PICONETS FOR
WIRELESS DEVICES
Bluetoothis a low-power, short-range, wireless radio system being devel-
oped by the Bluetooth Special Interest Group, an industry consortium
whose member companies include Ericsson, Nokia, and IBM. The radio
has a range of 10 meters and provides up to seven 1–megabit-per-second
links to other Bluetooth devices. Bluetooth operates in the 2.4-GHz indus-

18 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

IN
D

U
ST

RY
 S

U
R
V

EY

trial scientific and medical (ISM)
band to maximize international
acceptance and employs a fre-
quency-hopping system to min-
imize interference. The low-level
communications are detailed in
the Bluetooth specification.1

Bluetooth has a small form
factor; complete systems can be
as small as 2-cm square. The
technology supports both
isochronous and asynchronous
services. A simple isochronous
application might link a cellular phone and wire-
less headset, where the headset and base are both
Bluetooth devices. More complicated applications
include automatic discovery of wireless network
connections and automatic synchronization of data
between several Bluetooth devices.

Figure 1 shows the Bluetooth protocol stack. At
the bottom, the radio and baseband layers provide
the short-range, frequency-hopping radio platform.
The link manager protocol (LMP) handles data link
setup and provides authentication and encryption
services. The logical link control and adaptation
protocol (L2CAP) supports multiplexed connec-
tionless and connection-oriented communication
over the LMP layer. L2CAP is proprietary, but other
network protocols, such as IP, can be built on top
of it. L2CAP is also used by higher level protocols.
For example, Figure 1 shows links to the Hayes-
compatible AT (ATtention) protocol, which pro-
vides a standard interface for controlling remote cel-
lular phones and modems; RFComm, which
emulates an RS-232 serial interface; a simple object
exchange protocol (OBEX), which enhances Blue-
tooth’s interoperability with IrDA; and Bluetooth’s
service discovery protocol (SDP).

Groups of up to eight Bluetooth devices can
form ad hoc networks called piconets to communi-
cate, share services, and synchronize data. In each
piconet, a master device coordinates the other Blue-
tooth devices (including setting the 1,600–hops-
per-second frequency-hopping pattern). Individ-
ual devices can participate in more than one
piconet at a time and can be in one of several states:

� Standby—the device is conserving power and
waiting to connect to another Bluetooth device.

� Inquire—the device is searching for nearby
Bluetooth devices.

� Page—the device is connecting to another Blue-
tooth device.

� Connected—the device is connected to anoth-
er Bluetooth device.

� Hold and park—the device is participating in a
piconet with varying degrees of power savings.

The Bluetooth SDP provides a simple API for
enumerating the devices in range and browsing
available services. It also supports stop rules that
limit the duration of searches or the number of
devices returned. Client applications use the API
to search for available services either by service

S E R V I C E D I S C O V E R Y

19IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

TCP/UDP

vCard,
and so on

OBEX

Audio

RFComm

L2CAP

LMP

Baseband

Radio

AT

TCS SDP

IP

PPP

Figure 1. Bluetooth protocol stack. The link manager protocol (LMP)
controls link setup and provides encryption and authentication ser-
vices. The proprietary logical link control and adaptation protocol
(L2CAP) provides multiplexed communication over LMP to higher
level layers.

Table 1. Features of the five leading service discovery suites.

Feature Bluetooth Jini Salutation UPnP SLP

Service discovery ✔ ✔ ✔ ✔ ✔

Service announcement ✔ ✔ ✔ ✔

Service registry ✔ ✔ ✔

Interoperability ✔ ✔ ✔ ✔

Security ✔ ✔ ✔

F E A T U R E

20 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

classes, which uniquely identify types of devices
(such as printers or storage devices), or by match-
ing attributes (such as a model number or sup-
ported protocol). Attributes that describe the ser-
vices offered by a Bluetooth device are stored as a
service record and are maintained by the device’s
SDP server.

The distinction between service classes and
descriptive attributes is not well defined, but ser-
vice classes generally define broad device categories,
such as Printer, ColorPrinter, and PostScriptPrint-
er, while attributes allow a finer level of description.
Manufacturers must eventually standardize these
service classes for maximal interoperability between
Bluetooth devices.

Unlike higher level service discovery technolo-
gies such as Jini, Bluetooth’s SDP does not provide
a mechanism for using discovered services—spe-
cific actions required to use a service must be pro-
vided by a higher level protocol. However, it does
define a standard attribute ProtocolDescriptorList,
which enumerates appropriate protocols for com-
municating with a service.

Bluetooth devices provide data security through
unique 48-bit identifiers, 128-bit authentication
keys, and 8- to 128-bit encryption keys. Strong
authentication is possible because no internation-
al restrictions prevent it, but Bluetooth devices

must negotiate encryption
strength to comply with laws
restricting encryption. Note that
Bluetooth devices must be paired
to provide them with matching
secret keys that will support
authentication. Once paired,
Bluetooth devices can authenti-
cate each other and protect sen-
sitive data from snooping.
Regardless of encryption
strength, Bluetooth’s fast fre-
quency-hopping scheme makes
snooping difficult.

JINI: MOBILE JAVA CODE
Jini is a service discovery and advertisement system
that relies on mobile code and leverages the plat-
form independence of the Java language.2 The cur-
rent Jini implementation is based on TCP and
UDP, but implementations based on other network
protocols are certainly possible. The major require-
ments are reliable, stream-oriented communication
and a multicast facility. Jini’s language-centric
approach allows a flexible definition of service; for
example, a service can be implemented entirely in
software and, after discovery, can be downloaded
and executed entirely on the client. Examples of
such algorithmic services might include an imple-
mentation of a proprietary algorithm for shading a
polygon or formatting a document to meet an orga-
nizational standard. On the other hand, Jini also
requires each device either to run a Java virtual
machine or to associate itself with a device that can
execute a JVM on its behalf. For example, a Jini
“device chassis” might Jini-enable a number of
“dumb” devices, making their services available to
Jini clients.

Jini entities consist of services, lookup servers that
catalog available services, and clients that require
services. A service can also be a client; for example,
a telescope might provide pictures to a PDA as a
service and look for printing services as a client. All
service advertisements and requests go through a
lookup server. Figure 2 illustrates the discovery and
registration process for Jini clients and services.

To register service availability or to discover ser-
vices, a service or client must first locate one or
more lookup servers by using a multicast request
protocol. This request protocol terminates with the
invocation of a unicast discovery protocol, which
clients and services use to communicate with a spe-
cific lookup server. The unicast protocol culmi-

Lookup serverClient

Java code
(proxy)

Service

Figure 2. Jini service discovery entities: clients, lookup servers, and services. In this
example, a printer service registers a proxy object with a lookup server, which will
serve as a remote control for clients that use the service.

Jini requires each device either to
run a Java virtual machine or to
associate itself with a device that
can execute a JVM on its behalf.

S E R V I C E D I S C O V E R Y

21IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

nates in the transfer of an instance of the Ser-
viceRegistrar class, a “remote control” for the
lookup server. A lookup server can use the multi-
cast announcement protocol to announce its pres-
ence on the network. When a lookup server
invokes this protocol, clients and services that have
registered interest in receiving announcements of
new lookup services are notified.

These three protocols are encapsulated in a set
of Jini classes. For example, to find lookup services,
a client or service need only create an instance of
LookupDiscovery.

Jini uses Java’s remote method invocation (RMI)
facility for all interactions between either a client
or a service and the lookup server (after the initial
discovery of the lookup server). Once a lookup
server has been discovered and an instance of Ser-
viceRegistrar is available, services can register their
availability, and clients can search for needed ser-
vices by invoking ServiceRegistrar methods.

Jini associates a proxy, or remote control object,
with each service instance. A service advertises its
availability by registering its object in one or more
lookup servers via the register() method. This
method takes several arguments, including an
instance of ServiceItem, which contains a univer-
sally unique identifier for the service, its attribute
set, and its remote control object. This object may
either implement the service entirely (in the case
of an algorithmic service such as the implementa-
tion of a polygon-shading algorithm), or provide
methods for accessing the service over the network.
The leaseduration parameter of register() specifies
the service’s intended lifetime. The service is
responsible for renewing the lease within the time
specified to maintain its listing. The lookup serv-
er is free to adjust the lease time, which is returned
in a ServiceRegistration object.

When a service first contacts a lookup server, the
server generates a unique identifier for it; the ser-
vice uses this ID in all future registrations. The ser-
vice identifier lets clients request a specific service
explicitly and recognize when services reported by
different lookup servers are identical.

To use a service, a device must first secure an
instance of the proxy object for it. From a client
point of view, the location of the service proxied by
this remote control object is unimportant, because
the object encapsulates the location of the service
and the protocol necessary to operate it.

Clients use the lookup() method in ServiceReg-
istrar to discover services. This method takes a sin-
gle argument, an instance of ServiceTemplate. The

ServiceTemplate constructor takes several arguments.
The first is the service identifier. If the service iden-
tifier is null, then arrays of types (Java classes, typ-
ically interfaces) and attributes (attribute objects)
are used to match services. A service matches if its
class matches one of the classes in the types array
and if, for each of the attribute objects, all non-null
members match one of the service’s registered
attributes. The return value from lookup() is an
instance of ServiceMatches, which contains an array
of remote control objects for the services that
match. Finally, the notify() method allows a client
to request an asynchronous notification when ser-
vices matching a ServiceTemplate instance become
available. This method uses Jini’s distributed events
mechanism, which extends Java’s infrastructure for
eventing across JVMs.

Jini depends on Java’s security model, which
provides tools like digital certificates, encryption,
and control over mobile code activities such as
opening and accepting socket connections, reading
and writing to specific files, and using native meth-
ods. Systems administrators can establish different
policies depending on where the Java code origi-
nated (for example, the local file system or a remote
machine).

SALUTATION: A NETWORK-
INDEPENDENT ARCHITECTURE
Salutation is an architecture for service discovery
under development by the Salutation Consortium,
which includes members from both industry and
academia.3 The consortium’s goal is to build a roy-
alty-free architecture for service advertisement and
discovery that is independent of a particular net-
work transport.

Figure 3 shows the three fundamental compo-
nents in the Salutation architecture: functional units,

Service Service

Salutation manager

Transport manager

Service Client Client

Salutation manager

Transport manager

Salutation
manager protocol

Figure 3. Salutation architecture. Salutation managers are service
brokers, isolated by transport managers from the details of specific
network transport protocols.

F E A T U R E

22 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

salutation managers, and transport managers. From a
client’s point of view, a functional unit defines a ser-
vice. Functional units already specified or under
consideration by the Salutation Consortium include
printing, faxing, and document storage. There is
also work on a functional unit specification to allow
discovery of Hewlett-Packard JetSend-enabled
devices. The specifications define attributes that

characterize a service (for example, in the case of a
printer, double-sided capability, color, and so on).

The functional unit Doc Storage defines file
attributes that can be used to find information in
temporary or long-term storage. For example, a
client can search for operating system-specific dri-
vers or software necessary to interact with a newly
discovered device. The client simply queries a Salu-
tation manager for the necessary Doc Storage func-
tional unit, extracts the application or device driver,
and installs it, thus providing limited code mobility.

Salutation managers function as service brokers;
they help clients find needed services and let ser-
vices register their availability. Services can register
and unregister functional units with the local Salu-
tation manager by using the API calls slmRegister-
Capabilities() and slmUnregisterCapabilities(), respec-
tively. A client can use the slmSearchCapability() call
to determine if Salutation managers have registered
specific functional units. Under the current version
of the architecture, applications can query only the
local Salutation manager. Future versions will allow
remote Salutation managers to be specified. Once a
functional unit is discovered, slmQueryCapability()
can be used to verify that a functional unit has cer-
tain capabilities. The API also includes calls for ini-
tialization/version checking, availability checking,
and communication between clients and services.
(An API simulator is available at http://www.salu-
tation.org/simulate.htm.)

Salutation managers fill a role similar to lookup
servers in Jini, but they can also manage the con-
nections between clients and services. A Salutation
manager can operate in one of three “personalities”:

� In native personality, Salutation managers are
used only for discovery. They establish a con-
nection between a client and service but per-
form no further operations on the data stream.

� The emulated personality is similar to the native
personality in that Salutation managers set up
the connection, but in this case they transfer
native data packets encapsulated in Salutation
manager protocol format, providing a bridge
when no common message protocol exists
between client and service. The Salutation man-
ager is ignorant of the semantic content of the
data stream between client and service.

� In Salutation personality, Salutation managers
establish the connection between client and ser-
vice, and they also mandate the specific format
of the data transferred. The Salutation archi-
tecture defines the data formats.

A transport manager isolates the implementation
of the Salutation manager from particular trans-
port-layer protocols and thereby gives Salutation
network transport independence. To support a
new network transport requires a new transport
manager to be written, but does not require mod-
ifications to the Salutation manager. Like Jini (and
UPnP), Salutation requires a network transport
protocol that supports reliable, stream-oriented
communication. Initial implementations are based
on IP and IrDA because of their widespread use.

Transport managers also locate the Salutation
managers on their respective network segments via
either multicast, static configuration, or reference
to a centralized directory. Discovery of other Salu-
tation managers allows a particular Salutation man-
ager to determine which functional units have been
registered and to allow clients access to these remote
services. Communication between Salutation man-
agers is based on remote procedure call (RPC). This
interaction between remote Salutation managers
contrasts with other registry-based service discov-
ery mechanisms (for example, Jini and Service
Location Protocol), where clients would be respon-
sible for locating remote registries.

The Salutation specification currently does not
address security issues.

A lightweight version of Salutation, called Salu-
tation-Lite, has been developed for resource-limit-
ed devices. It is based primarily on IrDA to leverage
the large number of infrared-capable devices. Salu-
tation-Lite focuses primarily on service discovery. It
uses the functional units OpEnvironment and Dis-
play to describe the operating system, processor

Salutation requires a network
transport protocol that supports

reliable, stream-oriented
communication.

S E R V I C E D I S C O V E R Y

23IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

class, amount of memory, and display characteris-
tics of palm-sized devices. By noting the particular
characteristics of the device, servers can provide
appropriate drivers and software wirelessly.

Salutation-Lite implementations can be down-
loaded free from the Salutation website at
http://www.salutation.org.

UPnP: XML FOR A
WEB-BASED ARCHITECTURE
UPnP is a proposed architecture for service adver-
tisement and discovery supported by the UPnP
Forum, headed by Microsoft. Unlike Jini, which
depends on mobile code, UPnP aims to standardize
the protocols used by devices to communicate,
using XML. The UPnP specification4 is still in a
preliminary stage; major issues like security have
not yet been addressed.

UPnP’s device model is hierarchical. In a com-
pound device (for example, a VCR/TV combo), the
root device is discoverable, and a client (called a con-
trol point) can address the individual subdevices (for
example, a tuner) independently. Virtual Web servers

in the device act as entry points for interacting with
and controlling it. Devices that don’t speak UPnP
directly are called bridged devices. They can be inte-
grated into a UPnP network in a manner similar to
the integration in a Jini device chassis: A bridge maps
between UPnP and device-native protocols.

The UPnP specification describes device
addressing, service advertisement and discovery,
device control, eventing, and presentation. The
eventing facility allows clients to watch for signifi-
cant changes in the state of a discovered service. It
functions similarly to Jini’s distributed event facil-
ity. Presentation allows a client to obtain a GUI for
a discovered device through one of the device’s vir-
tual Web servers. Several protocols support these
functions:

� AutoIP,5 a simple protocol that allows devices
to dynamically claim IP addresses in the
absence of a DHCP server;

� Simple service discovery protocol (SSDP), the
UPnP mechanism for service discovery and
advertisement;

Discovery
server

Presentation
server Service

Multicast discovery

The control point generates the service control protocol
from information in the description document.

The discovery server sends the URL for
the device's description document
in response to the client's multicast
discovery message.

Commands

Application

Control point

Rehydrator

SCP

Figure 4. Interaction between a client (control point) and a service in UPnP. The control point discovers the
device by sending a multicast message. The device responds with a URL pointing to its description doc-
ument, which the control point can download for pertinent information, including a URL to which con-
trol messages can be sent and the protocol for interacting with the device through this control URL. The
“rehydrator” converts generic commands into device-specific control messages.

F E A T U R E

24 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

� Simple object access protocol (SOAP),6 a pro-
tocol for remote procedure calls based on XML
and HTTP that is used for device control after
discovery; and

� Generic Event Notification Architecture
(GENA), a UPnP subscription-based event
notification service based on HTTP.

When devices are introduced into a network, they
multicast “alive” messages to control points. When
they wish to cancel availability of their services, they
send “byebye” messages. In SSDP, each service has
three associated IDs—service type, service name,
and location—which are multicast when services
are advertised. Any of these IDs can also be used to
search for services.

To search, a control point sends a UDP multi-
cast request to the network, as shown in Figure 4.
Matching services send unicast responses to the
client. These responses contain URLs, each point-
ing to an XML description document that describes
a service. A description document contains several
important items:

� A presentation URL allows entry to a device’s root
page, which provides a GUI for device control.

� A control URL is the entry point to the device’s
control server, which accepts device-specific
commands to control the device.

� An event subscription URL can be used by
clients to subscribe to the device’s event service.
The client provides an event sink URL in the
subscription request. Significant state changes
in the device result in a notification to the
client’s event sink URL.

� A service control protocol definition describes the
protocol for interacting with the device.

The service control protocol (SCP) definition
allows APIs to be converted to device-specific com-
mands, shielding the application level from details
of particular devices. After retrieving the descrip-
tion document, a UPnP component on the control
point called the rehydrator is “plumbed” with a def-
inition of the device’s SCP. This component then
sends device-specific commands via the device’s
control URL. SOAP is used for this interaction.

SSDP is similar to the Internet Engineering Task
Force’s service location protocol, but it lacks a query
facility that can search for services by attributes. Fur-
ther, SLP incorporates security measures and can
interact with the IETF standards-track dynamic host
configuration protocol (DHCP)7 and the lightweight
directory protocol (LDAP).8 Finally, SSDP specifi-
cations currently limit discovery to a single subnet.
Since UPnP does not use a registry, it is also likely to
generate significantly more network traffic than SLP.

SLP: A PROPOSED IETF
STANDARD
Service location protocol is an IETF protocol for
service discovery and advertisement.9 It is current-
ly at the “proposed standard” stage along the IETF
standards track. Unlike Jini, Salutation, and UPnP,
which all aspire to some degree of transport-level
independence, SLP is designed solely for IP-based
networks. It provides a set of C and Java bindings
that provide service discovery and advertisement
functions to application software.

SLP comprises three entities: service agents
(SAs), user agents (UAs), and directory agents (DAs).
SAs advertise the location and attributes of avail-
able services, while UAs discover the location and
attributes of services needed by client software.
UAs can discover services by issuing a directory-
like query to the network. DAs cache information
about available services. Unlike Jini, SLP can oper-
ate without directory servers. The presence of one
or more DAs can substantially improve perfor-

Figure 5. SLP entities: user agents, directory agents, and service
agents. UAs discover services on behalf of applications, either via a
DA or directly through an SA. In this example, a laptop and desktop
are clients seeking services. A plotter and LCD projection system are
services advertising their availability.

Network
SD

Macintosh
Classic II

SD

Workstation

Directory agent

Server
agent

Server
agent

User
agent

 User
agent

S E R V I C E D I S C O V E R Y

25IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

mance, however, by reducing the number of mul-
ticast messages and the amount of network band-
width used. In fact, if DHCP is used to configure
SLP agents with the location of DAs, then multi-
cast is completely unnecessary. SLP also interop-
erates with LDAP, so services registered with an
SLP DA can be automatically registered in an
LDAP directory. This eliminates the need to
reconfigure clients that already discover services
using LDAP.

SLP has several mechanisms for discovering DAs:

� In passive discovery, SAs and UAs listen for
multicast announcements from DAs, which
periodically repeat these advertisements.

� In active discovery, SAs and UAs multicast SLP
requests or use DHCP to discover DAs. When
a DA is present, SAs and UAs use unicast com-
munication to, respectively, register their ser-
vices and find appropriate services.

In the absence of DAs, UAs multicast requests for
service and receive unicast responses directly from
the SAs that control matching services. This tends
to increase bandwidth consumption, but provides
a simpler model, appropriate for small networks
(such as a home LAN).

SLP services are advertised through a service
URL, which contains all information necessary to
contact a service. Clients use the service URL to
connect to the service. The protocol used between
the client and server is outside the scope of the SLP
specification. This separation is similar to Blue-
tooth, where the SDP does not specifically address
how devices will communicate.

Service templates define an attribute set for each
service type (a printer, for example).10 The attrib-
utes include a specification of the attribute types
and information about default and allowed values;
they are used to differentiate between services of
the same type and to communicate configuration
information to UAs.

SLP doesn’t define the protocols for communi-
cation between clients and services, and so its secu-
rity model concentrates on preventing the mali-
cious propagation of false information about
service locations. SAs can include digital signatures
when registering so DAs and UAs can verify their
identity. Digital signatures can also be required
when DAs advertise their availability, allowing UAs
and SAs to avoid rogue DAs (that is, those without
a proper signature). As with Jini, setting up the
security features of SLP requires some configura-

tion effort, but the effort can be well worth it, par-
ticularly in open environments.

BRIDGING THE TECHNOLOGIES
For service discovery to become pervasive, either
a single service discovery technology must domi-
nate or the most commonly used technologies
must be made interoperable. Currently, bridging
seems to be the most promising prospect for inter-
operability.

Implementations of certain low-level functions
of service discovery (such as discovering registries)
are interchangeable. For example, the Salutation
Consortium uses SLP for service discovery beyond
the local subnet. This lets the Salutation Manager
search for SLP DAs, and then use SLP to register
functional units and search for requested services.

A Jini-SLP bridge has also been developed,
which allows services lacking a JVM to participate
in Jini systems.11 The heart of the Jini-SLP bridge is
a special SLP UA that registers the availability of
“Jini-capable” SLP SAs. To do this, Jini-capable
SLP services advertise the availability of a Jini driver
factory. The UA discovers all SAs with driver fac-
tories and registers them with one or more Jini
lookup services. When a Jini client needs one of the
registered SAs, it downloads the driver factory from
the lookup server and uses it to instantiate a Java
object to drive the service. Note that the SLP SAs
are not required to host a Java virtual machine—
the Java code installed on the SAs is static. Similar
schemes are possible for the other technologies; for
example, it should be possible to Jini-enable UPnP
services in this way.

Miller and Pascoe12 describe mapping Saluta-
tion to Bluetooth SDP to take advantage of Blue-
tooth’s wireless capability. Two approaches are con-
sidered: The first maps the Salutation APIs to
Bluetooth SDP by implementing Salutation on
top of Bluetooth; the second uses a Bluetooth
transport manager and essentially replaces Blue-
tooth SDP with Salutation. This approach will also

Implementations of certain
low-level functions of service
discovery (such as discovering
registries) are interchangeable.

F E A T U R E

26 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

work with other schemes, like Jini. Bluetooth is a
particularly attractive target for interoperability,
primarily because of its wireless capability. Because
of this, additional interoperability efforts between
Bluetooth and other service discovery technologies
seem inevitable.

Each service discovery technology has advan-
tages and disadvantages. Currently, interoperabili-
ty efforts are perhaps the most important force in
service discovery, since it is very unlikely that device
manufacturers will embrace multiple service dis-
covery technologies on low-cost devices. �

ACKNOWLEDGMENTS
Thanks to Sumi Helal of the University of Florida for sparking

my interest in this area. Much of the material in this article is

derived from a tutorial he invited me to create for IPCCC 2000

in Phoenix. Many thanks to Erik Guttman of Sun Microsystems

for clarifying the differences between SLP and SSDP and going

way beyond the call of duty in critiquing early versions of this

article. David La Motta and Kirk Perilloux were kind enough

to read early versions and offer suggestions. Finally, my person-

al editor (and mate) Christine Ciarmello-Richard was gracious

enough to lend her critical eye, as always.

REFERENCES
1. Specification of the Bluetooth System; available at http://www.

bluetooth.com/developer/specification/specification.asp.

2. K. Arnold et al., The Jini Specification, Addison-Wesley

Longman, Reading, Mass., 1999.

3. Salutation Architecture Specification; available online at

http://www.salutation.org/specordr.htm.

4. Universal Plug and Play specification v1.0; available online

at http://www.upnp.org/.

5. R. Troll, “Automatically Choosing an IP Address in an Ad-

Hoc IPv4 Network,” IETF Internet draft, work in progress,

Mar. 2000.

6. Simple Object Access Protocol (SOAP) 1.1, W3C Note;

available online at http://www.w3.org/TR/SOAP.

7. R. Droms, “Dynamic Host Configuration Protocol,” IETF

RFC 2131, Mar. 1997; available online at http://www.

dhcp.org/rfc2131.html.

8. M. Wahl, T. Howes, and S. Kille, “Lightweight Directory

Access Protocol, version 3,” IETF RFC 2251, Dec. 1997;

available online at http://www.rfc-editor.org/rfc/rfc2251.txt.

9. E. Guttman, “Service Location Protocol: Automatic Dis-

covery of IP Network Services,” IEEE Internet Computing,

vol. 3, no. 4, July/Aug. 1999, pp. 71-80.

10. E. Guttman, C. Perkins, and J. Kempf, “Service Templates

and Service: Schemes,” IETF RFC 2609, June 1999; avail-

able online at http://www.rfc-editor.org/rfc/rfc2609.txt.

11. E. Guttman and J. Kempf, “Automatic Discovery of Thin

Servers: SLP, Jini and the SLP-Jini Bridge,” Proc. 25th Ann.

Conf. IEEE Industrial Electronics Soc. (IECON 99), IEEE
Press, Piscataway, N.J., 1999.

12. B. Miller and R. Pascoe, “Mapping Salutation Architec-

ture APIs to the Bluetooth Service Discovery Layer,” white

paper; available online at http://www.salutation.org/

whitepaper/BtoothMapping.pdf.

Golden G. Richard III is an assistant professor of computer sci-

ence at the University of New Orleans in Louisiana. His

research interests include mobile computing, wireless net-

working, operating systems, and fault tolerance. He is on

the executive committee of the IEEE Technical Commit-

tee on the Internet, a member of the IEEE and the ACM,

and liaison to the University of New Orleans for Usenix’s

Educational Outreach Program.

Readers may contact the author at golden@cs.uno.edu.

How to Reach IC

Writers
We welcome submissions about Internet application technologies. For detailed instructions and information on peer
review, IEEE Internet Computing’s author guidelines are available online at http://computer.org/internet/edguide.htm.

Letters to the Editor
Please send letters via e-mail to internet-computing@computer.org.

Reuse Permission
For permission to reprint an article published in IC, contact William J. Hagen, IEEE Copyrights and Trademarks Manager,
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855-1331; w.hagen@ieee.org. Complete information is available
at http://computer.org/permission.htm. To purchase reprints, visit http://computer.org/author/reprint.htm.

