Smart Spaces

Overview:

The Smart-M3 Platform:
Multi-device, Multi-vendor,
Multi-domain

1

Dmitry G. Korzun, 2011-2022

Outline

- § I. Architectural Overview
- §2. Notion of Application (multi-agent)
- §3. Interfaces

§4. Service Formalism

(agents <-> smart space)

Dmitry G. Korzun, 2011-2022

Research scope

- ▶ SOFIA project
- Smart Objects For Intelligent Applications
- DIEM project
 - Devices and Interoperability Ecosystem
- ▶ EIT ICT Labs

one of Knowledge and Innovation Communities (KICs) selected by the European Institute of Innovation & Technology to accelerate innovation in Europe

▶ FRUCT

Open Innovations Association

http://sourceforge.net/projects/smart-m3/

BSD open source license

▶ 3

Dmitry G. Korzun, 2011-2022

§1. Architectural Overview

Smart applications needs

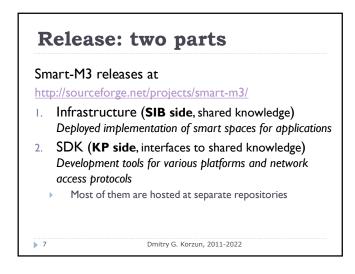
a smart space infrastructure

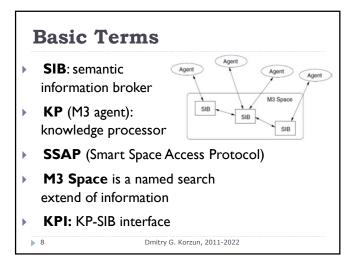
Challenges from practice

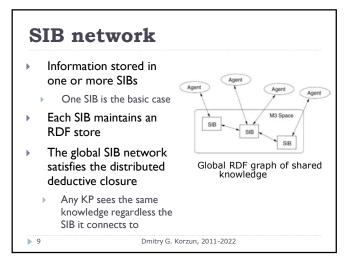
- Digital convergence and interoperability
 - Many ways for communication with the external world
 - Domain specific interoperability standards, e.g., UPnP (in home entertainment)
 - Limited set of use cases
 - Lengthy and uncertain standardization process
- Ubiquitous computing devices everywhere
 - Ideally, interoperability with whatever devices that are in the locality at any given time

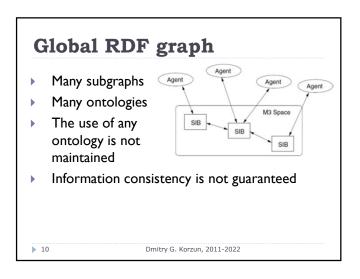
4

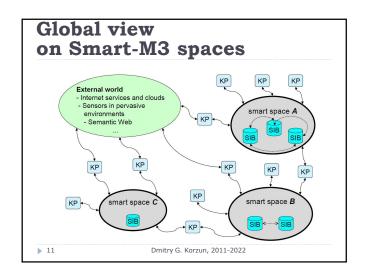
Dmitry G. Korzun, 2011-2022

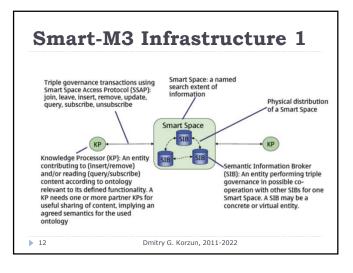

Smart-M3 space Multidevice, Multidomain, Multivendor Infrastructure: Semantic Information Broker (SIB) maintains smart space content in RDF triples KP Application: Knowledge Processors (KPs, agents) running on IoT devices Smart Spa Interaction: Blackboard SIB and Pub/Sub ioin, leave insert, update, remove (un)subscribe ΚP Smart space: KPs share ad-hoc knowledge and reason over it to construct services

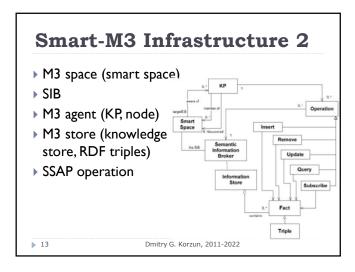

Dmitry G. Korzun, 2011-2022


Key principles


- Giant global graph of semantic web vs. dynamic and local semantic web
- Interoperability via information sharing
 - Sharing local semantic information e.g., about the immediate environment of a device
 - Accessing locally relevant parts of the giant global graph
 - Cross-domain interoperability due to ontology compositions
 - Standardizing an ontology allows an indefinite set of use cases to be implemented


6





Smart-M3 Infrastructure 3

- M: Multi-domain
- M: Multi-device
- M: Multi-vendor
- Many kinds of devices can interact with each other
 - mobile phone, television set, laptop, ...
- Device may be composed of parts that are considered as individual partners for interaction with another
 - PC keyboard for typing input to a mobile phone
- Free in choosing the manufacturer
 - Intel, Samsung, Apple, ...
 - Dmitry G. Korzun, 2011-2022

Smart Space Access Protocol (SSAP): 1

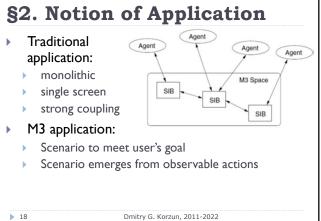
- Join: Join a KP to a named space
- Leave: Leave a named space. After leaving, no more operations may be performed until a join operation
- Insert: Atomically insert a graph in the space
- ▶ **Remove**: Atomically remove a graph from the space
- Update: Atomically update a graph in the SIB. Update is a combination of remove followed by insert, executed atomically
- A graph to remove, a graph to insert
- Dmitry G. Korzun, 2011-2022

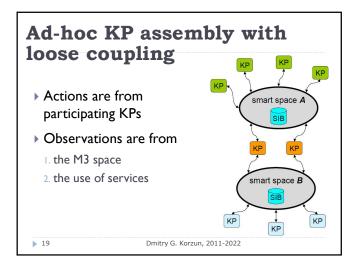
Smart Space Access Protocol (SSAP): 2

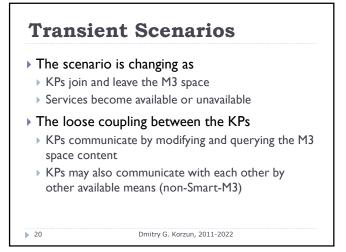
- Query: Query for information in the space using any supported query language (SPARQL)
- Subscribe: Set up a persistent query in the space; a change to the query results is reported to the subscriber
- Unsubscribe: Cancel an existing subscription

Guarantees

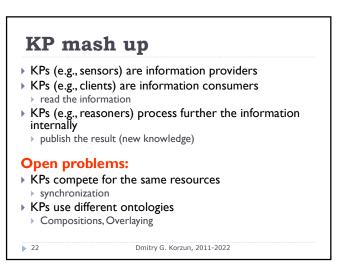
- Departions are done in the same order as they were performed by the KP
- For a received operation, the SIB will process no operation received later before processing the earlier operations

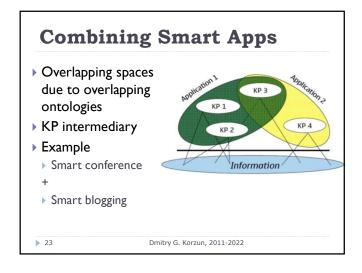

Dmitry G. Korzun, 2011-2022

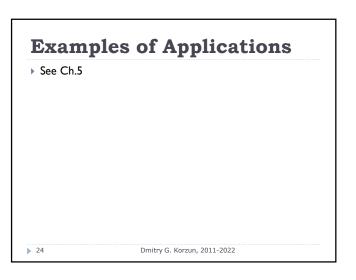

Smart Space Access Protocol (SSAP): 3

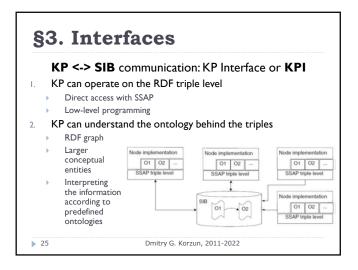

Not implemented yet

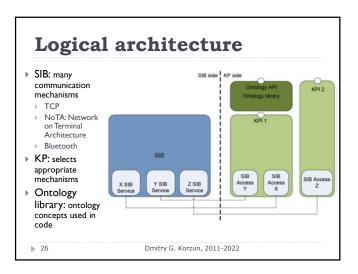
- ▶ Logic rules over RDF triple store
 - b deriving new knowledge (views, concepts) from the RDF graph, like in Prolog
 - resource allocation and access
 - Synchronization and conflict resolution
- Access control mechanism based on the information content
 - Knowledge privacy
 - Tagging information with ownership and access rights
 - KP provides credentials when joining a particular named M3 space
- > Test-and-set type of primitives for basic synchronization
- SIB network and a protocol of distributed deductive closure

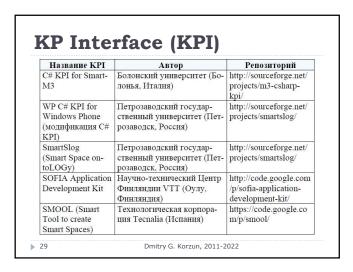

Dmitry G. Korzun, 2011-2022

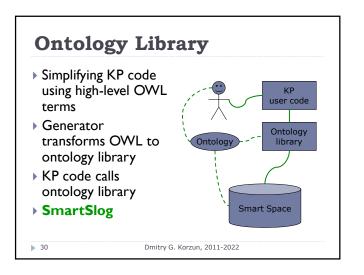







KP ontology Each KP understands its own, non-exclusive set of information RDF graph KP ontology allows analyzing this graph Overlapping is essential for interoperability KPs can see each others actions





KP Development Tools Low-level programming tools Based on triples Basic manipulations RDF triple exchange Mediator library for SSAP operations High-level programming tools Based on ontology entities Advanced manipulations Ontology library

Название КРІ	Автор	Репозиторий
M3-Python KPI	Исследовательский центр Nokia (Хельсинки, Финлян- дия)	http://sourceforge.net/ projects/smart-m3/
KPI_Low	Научно-технический Центр Финляндии VTT (Оулу, Финляндия)	http://sourceforge.net/ projects/kpilow/
C_KPI вариант развития KPI Low	Петрозаводский государ- ственный университет (Пет- розаводск, Россия).	http://sourceforge.net/ projects/smartslog/
Smart-M3 Java KPI library	Болонский университет (Болонья, Италия) и Научно- технический Центр Финляндии VTT (Оулу, Финляндия)	http://sourceforge.net/ projects/smartm3- javakpi/
Smart-M3 PHP KPI library	Болонский университет (Болонья, Италия)	http://sourceforge.net/ projects/sm3-php-kpi- lib/

Smart-M3 Value Offering

- USERS: Freedom of choice
 I want to select my device freely from any vendor knowing that it works with all devices I already have.
 M3 = multi vendor
- DEVICE MANUFACTURERS: Seamless operation with all devices I want to create innovative products that consumers want to buy because they work seamlessly with other devices wherever he/she goes.

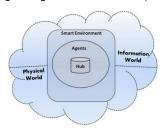
 M3 = multi device
- SERVICES COMPANIES: Gaining competitive edge
 My company develops novel services using mash-up approach and we want seamless data portability to effortlessly create winning solutions for cross domain user experience.
 – M3 = multi domain
- APPLICATION DEVELOPERS: Focus on consumer 'wow'
 As an application developer I want to focus on creating consumer 'wow' instead of porting my code to all different platforms. I also want develop cross-domain mashup services as easy as internet services are created today!
 M3 = multi domain

> 31

Dmitry G. Korzun, 2011-2022

Literature

- J.Honkola, H.Laine, R.Brown, O.Tyrkko. Smart-M3 Information Sharing Platform (ISCC 2010)
- D.Korzun, A.Lomov, P.Vanag, S.Balandin, J.Honkola. Generating Modest High-Level Ontology Libraries for Smart-M3 (UBICOMM 2010). Extended version in International Journal On Advances in Intelligent Systems (vol.4, nr3&4, 2011).
- E. Ovaska, T. S. Cinotti, and A. Toninelli. The design principles and practices
 of interoperable smart spaces. in Advanced Design Approaches to
 Emerging Software Systems: Principles, Methodology and Tools. IGI Global,
 2012, pp. 18–47.
- D. Korzun, S. Balandin, A. Gurtov. Deployment of Smart Spaces in Internet of Things: Overview of the design challenges. ruSMART 2013
- А.М.Кашевник, Д.Ж.Корзун, С.И.Баландин. Разработка интеллектуальных систем на базе платформы SMART-M3. Уч.пос. Издво ПетрГУ, 2013.


http://elibrary.karelia.ru/book.shtml?levelID=031&id=18104&cType=1

▶ 32

Dmitry G. Korzun, 2011-2022

§4. Service Formalism

 Dmitry Korzun. Service Formalism and Architectural Abstractions for Smart Space Applications. Proc. Central & Eastern European Software Engineering Conference in Russia (CEE-SEC(R)), 2014.

> 33 Dmitry G. Korzun, 2011-2022

Smart Space Application (SSA)

- Distributed system of agents hosted in IoT environment
- Smart properties of SSA:
 - Understanding the situation where the application is used and by whom
 - Interpreting the semantics of shared information
 - 3. Tolerating uncertainty at development and run time

▶ 34

Dmitry G. Korzun, 2011-2022

IoT Environmen

SSA Services

- SSA acquires knowledge about the environment and its users to provide them with services using the best-suit resources from all kinds of participants
- Agent is a Knowledge Processor (KP) over shared content I
- Service development: in terms of scenarios with knowledge reasoning acts
- Control flow: initiated from the user side and completed at a point where the user perceives the service

> 35 Dmitry G. Korzun, 2011-2022

Semantics in Smart Spaces

- Smart space aims at encompassing all information pieces the application needs for its service operation
- Semantics is a relationship (or mapping) established between such information pieces
- Informational content *I*; let *a* and *b* in *I*
- $\,\,{}^{}_{}_{}_{}$ Relation between concepts: $a \to b$ since a in A and b in B
- ightarrow Relation between facts: a
 ightarrow b is kept directly in I
- Local relation: $a \to b$ due to agent's decision (kept by the agent itself)

▶ 36

Content Representation

- Content I is a large collection of disparate information pieces (knowledge fragments)
- Corpus-based representation: I is structured (semantic relations) dynamically, in ad-hoc manner
- Ontology-driven approach: I consists of information objects and semantic relations among them
- Representation of I is an ontology graph (semantic network, OWL based, reducible to RDF for machine processing):
 - terms are structured by classes and terminological relations/restrictions
 - individuals (instances) of terms have data properties and relations between individuals (object properties) represent assertions
- ightharpoonup Smart space provides search query interfaces to reason knowledge over I and its instant structure

Dynamic, localized space based Semantic Webs

▶ 37

Dmitry G. Korzun, 2011-2022

P2P-like Network of Knowledge

- ▶ Object in I = peer (P2P node)
- A self-contained piece of information stored in the smart space
- OWL view: an individual (i.e., someone shares an instance of domain term) having data properties and linked with other objects by object properties
- <u>P2P view</u>: an autonomic entity with own data, linkage (semantic relations) and participation (join/leave) decision making
- \blacktriangleright P2P network G_I is formed on top of I

On the P2P level we abstracted from which KP inserts/updates/removes the object, so focusing on dynamics of information stored in the smart space

> 38

Dmitry G. Korzun, 2011-2022

Model Properties (1/2)

- Virtualization
 - > Object is a digital representation of a real thing or of an artificial entity
 - Agents (running processes) and domain entities (informational objects) are equal nodes
 - All system components become observed on "one stage" and manipulated by changing their digital representation
- Hierarchy
 - ► Hierarchical semantic relations
 - Concept relations, e.g., "Is-a"
- Stable (long-term) relations by the problem domain, e.g., ontology classes hierarchy
- Composition
 - ▶ Granularity level: node clustering and aggregation
 - Short-term relations are possible: dynamic grouping

> 39

Dmitry G. Korzun, 2011-2022

Model Properties (2/2)

- Emergent semantics
- Non-hierarchical semantic relations
- Node establishes links to other nodes (semantic neighbors)
- Subject to frequent changes
- Local relations (perceivable by some agents only)
- Data integration
- Virtual data integration system
- Some objects in I represent external data sources (and the means to access data or even reason knowledge over these data)
- Hub-like relations

40

Dmitry G. Korzun, 2011-2022

Service as Knowledge Reasoning

Information Service

- event-based activation
- information selection
 target UI devices
- target of device
 service delivery

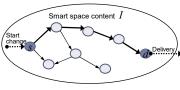
Control Service

- event-based activation
- 2. information selection
- formulation of control action
- service delivery

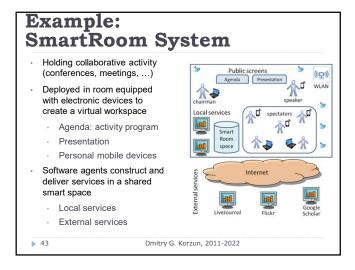
Step-wise process:

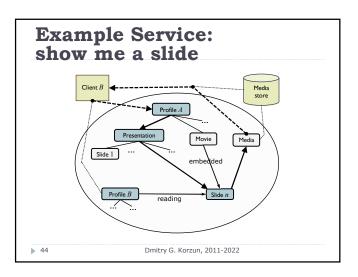
- Change of *i* in *I* forms an event observed by other participants
- $\qquad \qquad \text{When } i_I \text{ in } I \text{ is changed it courses creating or updating } i_2 \text{ in } I, \dots \\$
- The process can be branched, i.e., one change affects many objects

<u>Architectural view</u>: A service is made by interaction of software agents, when each agent makes its contribution by changing objects in *I*


41

Dmitry G. Korzun, 2011-2022


Service as P2P Path


- Injection of the change starts the service, analogous to a P2P node starting a lookup query
- The sequence of changes flows in G_I
- Note that parallel paths are possible
- Any point when an agent reads an object can be considered a final step of the service

construction since the agent consumes an outcome

42

Architectural Abstractions

- ▶ Whole app.logic = sum of concurrent activities of KPs
- ▶ KP is responsible for links $i \rightarrow j$ of service $s \rightarrow *d$
- Event-driven programming, e.g., persistent semantic query
- Rule-based programming

Type	Description
P-C	Producer-Consumer pattern. KP_P publishes information into I . KP_C queries this information and reacts.
Pipe	KP_0 , KP_1 ,, KP_n form a kind of supply chain (linear) with source KP_0 and destination KP_n . The P-C abstraction is a particular case for $n = 1$.
Tree	Some KPs induce reaction of more than one other KPs. A kind of one-to-many synchronization with epidemic-style dissemination of changes in I .
Flow	Cyclic supply chains are possible. The KPs are or- ganized in iterative processing flow when the same KP is activated multiple times.

Часть 4 проекта

Процессоры знаний

- Действия каждого агента (процессора знаний) в каждом сценарии построения сервисов.
- Диаграммы последовательности (для сценариев) или высокоуровневый алгоритм действий агента (как параллельный вычислительный процесс).
- Действия по доступу к интеллектуальному пространству.
- Действия (алгоритмы) по анализу данных.
- Действия по доставке сервиса пользователю