
Smart Spaces. Ch.2: Agent interaction models

Smart Spaces Chapter 2: Agent interaction models: Blackboard and Publish/Subscribe

Dmitry G. Korzun, 2011-2023

Some Properties Localization and dynamic hub Personalization Adaptability Anticipated construction and proactive delivery of services Given context (situation): Personal, Environmental Discover or construct pertinent (most suitable) services for the user

Operations (Smart-M3) Operation **Description** Join, Leave Session to access a smart space Atomic transactions for an Insert, Update, element of data. Act of Remove publishing Requesting information. Various Query query languages Subscribe, Set up (resp. cancel) a persistent query. Changes are Unsubscribe reported to the subscriber Dmitry G. Korzun, 2011-2023 **5**

Space	computing
Space copoints, to	ntent: $S = (I, \rho)$
	mation set = { points } to deduce new knowledge
	nulti-domain Knowledge Base pased knowledge representation
_	y: RDF and OWL representation see Ch.3 on Semantic Web)
6	Dmitry G. Korzun, 2011-2023

§2. Publish/Subscribe

A paradigm for large-scale Internet-based systems

- I. Publishers:
 - generating and feeding the content
- 2. Subscribers:
 - specifying content of their interests
- 3. Infrastructure:

matching subscriber interests with published content and delivering matched content to the subscribers

• /

Dmitry G. Korzun, 2011-2023

Key Idea

- Subscribers
 - register their interest in a topic
- then asynchronously receive events matching their interest
- regardless of the event publisher
- ▶ They are
 - not directly targeted by the publisher,
 - indirectly addressed through the content

▶ 8

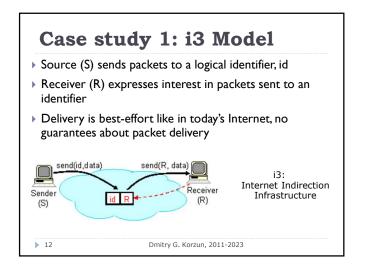
Dmitry G. Korzun, 2011-2023

Properties

- Asynchronous communications
- ▶ Many-to-many communication paradigm
- Anonymity: The interacting parties do not need to know each other
- Decoupling in time: Partners do not need to be up at the same time
- Decoupling in flow: Sending/Receipt does not block participants
- Information diffusion

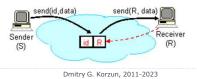
▶ 9

Dmitry G. Korzun, 2011-2023


Classification

- . Topic-based
 - Publishers and subscribers are connected together by predefined topics (channels)
 - > Subscription to a topic to receive asynchronous updates
- Content-based
 - Subscribers query on the content
 - Content filtering to match subscriber interests with published content
- Hybrid of the two
 - publishers post messages to a topic
 - subscribers register content-based subscriptions to one or more topics

•


Dmitry G. Korzun, 2011-2023

Publisher process ... pub(x) $sub(\sigma)$ $usub(\sigma)$ Notification Service (NS) A pub/sub system interaction through notifications mathred Description Service (NS)

i3 Logical Rendezvous

- id represents a logical rendezvous between the sender's packets and the receiver's trigger
- > This indirection decouples the sender from the receiver
- The senders need neither be aware of the number of receivers nor their location
- The receivers need not be aware of the number or location of senders

Case study 2: Pub/Sub Web

- Frequently updated content
 - ▶ Blogs (Weblogs)
- Wikis (collaboratively authored web pages)
- ▶ News sites
- Deliver updates to users quickly and efficiently
- Asynchronous update notification

14

Dmitry G. Korzun, 2011-2023

Naïve approach

- Repeated polling at the subscriber side
 - E.g., Robots

13

- Uncoordinated polling suffers from poor performance and scalability
- Slow receiving updates
 - ▶ Limit posed by the polling period
 - ▶ Polling at faster rates -> high bandwidth load
 - ▶ the same content is polling independently by many subscribes

15 Dmitry G. Korzun, 2011-2023

Brokers

- Publishing information through a broker
 - Middleware to create an infrastructure
 - In Smart-M3: Semantic Information Broker (SIB)
- ▶ Each broker maintains its subscribers
 - Subscription table
 - Filtering
 - Store and forward function to route messages from publishers to subscribers
- Infrastructure for routing and information diffusion between brokers
 - ▶ Peer-to-Peer Overlay Networks

1

Dmitry G. Korzun, 2011-2023

References

- K.Birman and T.Joseph. Exploiting virtual synchrony in distributed systems. In SOSP '87 Proc. the 11th ACM Symp. on Operating systems principles (1987)
- L. J. B. Nixon et al. Tuplespace-based computing for the semantic web: A survey of the state-of-the-art. Knowl. Eng. Rev. (2008)
- R.Baldoni, M.Contenti, A.Virgillito. The Evolution of Publish-Subscribe Communication Systems. In book: Future directions in distributed computing (2003)
- P.T. Eugster et al. The many faces of publish/subscribe. ACM Comput. Surv. (2003)
- C.Esposito, D.Cotroneo, S.Russo. On reliability in publish-subscribe services. Computer Networks (2013)
- C.Esposito et al. A knowledge-based platform for Big Data analytics based on publish-subscribe services and stream processing. Knowledge-Based Systems (2015)

▶ 17

Dmitry G. Korzun, 2011-2023

§3. Software Agents

Programming aspects of agents interaction

- Direct vs. indirect
- Indirect:
 - > changes in smart spaces content
 - event-driven and information-driven
- ▶ Direct
 - b due to the hub-property, performance, etc.
 - > access to external data sources
 - Representation of an origin from physical or informational worlds

18

Dmitry G. Korzun, 2011-2023

Network connection

- Agent Smart Space (Semantic information broker, Shared information store)
- Session-based: join, operate, leave
- Instability of network connection (e.g., in mobile networks)
- > Security: e.g., key exchange and data access scope
- ▶ Participation in several smart spaces

19

Dmitry G. Korzun, 2011-2023

Content Retrieval

- ▶ Search queries
- ▶ Specification of needed data/information/knowledge
- ▶ Reasoning on the smart space side
- > Search query is a particular case of reasoning
- ▶ Big Brother approach
- ▶ Collectively derived knowledge is published for shared use
- ▶ SPARQL (see Ch.3 on Semantic Web)

▶ 20

Dmitry G. Korzun, 2011-2023

Local store

- ▶ To process data, agent must download them from smart space
- Local decision-making based on
 - 1. Information from smart space
 - 2. Local knowledge (non-shared, e.g., private)
- ▶ Sharing the result (partially)
- Local representation may differ from the shared representation

21

Dmitry G. Korzun, 2011-2023

Synchronization

- ▶ Event-driven and information-driven programming
 - do something if a certain event occurs
 - be do something if certain knowledge becomes available
- ▶ Persistent search queries: 1) initiate, 2) operate, 3) terminate
 - Subscription
 - Insert and update
 - Remove?

> 22

Dmitry G. Korzun, 2011-2023

Local processing

- ▶ Parallel threads
 - E.g., main thread and subscription threads
- Local reasoning
 - Performance
 - Relatively small data set to reason over
 - "Big brothers"

▶ 23

Dmitry G. Korzun, 2011-2023

Thinking on Student Project

- What devices do you need for hosting the agents?
 - ► Computers (laptops, desktops, server machines, ...)
 - ▶ Embedded devices
 - $\qquad \qquad \text{Personal mobile devices (smartphones, gadgets, } \ldots)$
 - Web services and data sources in the Internet
 - **...**
- What agents are needed?
- What services they implement by interacting?

≥ 24

Dmitry G. Korzun, 2011-2023

Smart Spaces. Ch.2: Agent interaction models

Часть 2 проекта

Многоагентная архитектура и детальное проектирование

- Детализация требований в сценариях использования (шаги по получению и обработке данных, алгоритмы обработки и виды информации).
- Какую информацию надо делать общей для агентов (общее информационное пространство).
- Анализ интеллектуальности в рамках разработанных сценариев использования.

> 25

Dmitry G. Korzun, 2011-2023