
Smart Spaces. Ch.2: Agent interaction models

Operation	Description
Join, Leave	Session to access a smart space
Insert, Update, Remove	Atomic transactions for an element of data. Act of publishing
Query	Requesting information. Various query languages
Subscribe, Unsubscribe	Set up (resp. cancel) a persistent query. Changes are reported to the subscriber

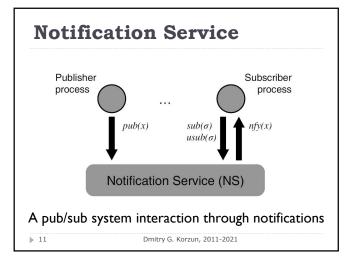
Space computing	
 Space co points, tu 	ontent: uples, facts $S=(I, ho)$
	mation set = { points } to deduce new knowledge
	nulti-domain Knowledge Base based knowledge representation
<u> </u>	y: RDF and OWL representation see Ch.3 on Semantic Web)
6	Dmitry G. Korzun, 2011-2021

S2. Publish/Subscribe A paradigm for large-scale Internet-based systems Publishers: generating and feeding the content Subscribers: specifying content of their interests Infrastructure: matching subscriber interests with published content and delivering matched content to the subscribers

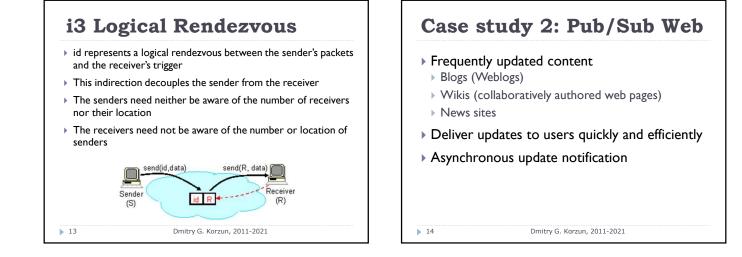
Key Idea

Subscribers

- > register their interest in a topic
- then asynchronously receive events matching their interest


Dmitry G. Korzun, 2011-2021

- regardless of the event publisher
- They are


8

- > not directly targeted by the publisher,
- indirectly addressed through the content

Properties Classification Topic-based Ι. Asynchronous communications Publishers and subscribers are connected together by predefined topics (channels) Many-to-many communication paradigm Subscription to a topic to receive asynchronous updates Anonymity: The interacting parties do not need to know each other Content-based 2. Subscribers query on the content > Decoupling in time: Partners do not need to be up at Content filtering to match subscriber interests with the same time published content Decoupling in flow: Sending/Receipt does not block Hybrid of the two 3. participants publishers post messages to a topic Information diffusion subscribers register content-based subscriptions to one or more topics > 9 Dmitry G. Korzun, 2011-2021 ▶ 10 Dmitry G. Korzun, 2011-2021

Naïve approach

- Repeated polling at the subscriber side
 E.g., Robots
- Uncoordinated polling suffers from poor performance and scalability
- Slow receiving updates

▶ 15

- Limit posed by the polling period
- Polling at faster rates -> high bandwidth load
- > the same content is polling independently by many subscribes

Dmitry G. Korzun, 2011-2021

Brokers

- Publishing information through a broker
 - Middleware to create an infrastructure
 - In Smart-M3: Semantic Information Broker (SIB)
- Each broker maintains its subscribers
 - Subscription table
 - Filtering

16

- Store and forward function to route messages from publishers to subscribers
- Infrastructure for routing and information diffusion between brokers
 - Peer-to-Peer Overlay Networks

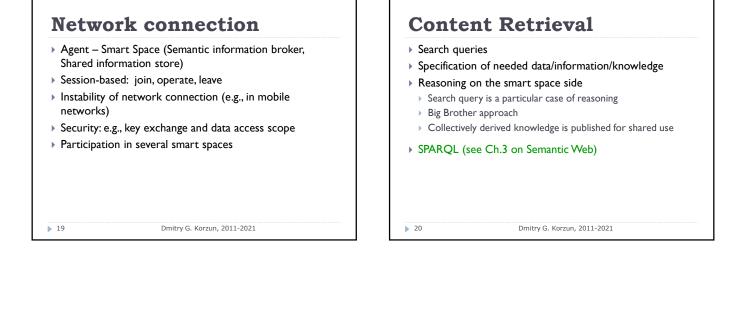
Dmitry G. Korzun, 2011-2021

References

- K.Birman and T.Joseph. Exploiting virtual synchrony in distributed systems. In SOSP '87 Proc. the 11th ACM Symp. on Operating systems principles (1987)
- L. J. B. Nixon et al. Tuplespace-based computing for the semantic web: A survey of the state-of-the-art. Knowl. Eng. Rev. (2008)
- R.Baldoni, M.Contenti, A.Virgillito. The Evolution of Publish-Subscribe Communication Systems. In book: *Future directions in distributed computing* (2003)
- P.T. Eugster et al. The many faces of publish/subscribe. ACM Comput. Surv. (2003)
- C.Esposito, D.Cotroneo, S.Russo. On reliability in publish-subscribe services. Computer Networks (2013)
- C.Esposito et al. A knowledge-based platform for Big Data analytics based on publish-subscribe services and stream processing. *Knowledge-Based Systems* (2015)

17 Dmitry G. Korzun, 2011-2021

§3. Software Agents

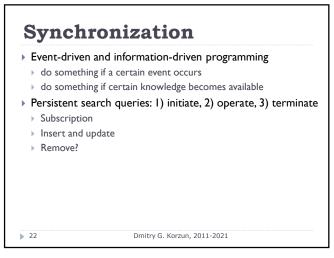

Programming aspects of agents interaction

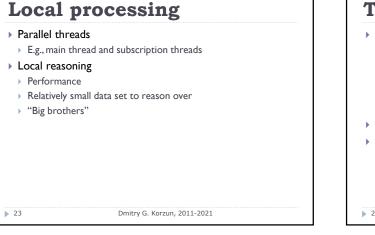
- Direct vs. indirect
- Indirect:
 - changes in smart spaces content
 - event-driven and information-driven
- Direct
 - due to the hub-property, performance, etc.
 - access to external data sources
 - Representation of an origin from physical or informational worlds

18

Dmitry G. Korzun, 2011-2021

Smart Spaces. Ch.2: Agent interaction models




- To process data, agent must download them from smart space
- Local decision-making based on
 - 1. Information from smart space
 - 2. Local knowledge (non-shared, e.g., private)
- Sharing the result (partially)

21

 Local representation may differ from the shared representation

Dmitry G. Korzun, 2011-2021

What devices do you need for hosting the agents?

- Computers (laptops, desktops, server machines, ...)
- Embedded devices
- Personal mobile devices (smartphones, gadgets, ...)
- Web services and data sources in the Internet
- ▶ ...
- What agents are needed?
- > What services they implement by interacting?

24

Dmitry G. Korzun, 2011-2021

Smart Spaces. Ch.2: Agent interaction models

Часть 2 проекта

Многоагентная архитектура и детальное проектирование

- Детализация требований в сценариях использования (шаги по получению и обработке данных, алгоритмы обработки и виды информации).
- Какую информацию надо делать общей для агентов (общее информационное пространство).
- Анализ интеллектуальности в рамках разработанных сценариев использования.

> 25

Dmitry G. Korzun, 2011-2021