Applications: Architectures and

Designs

Smart Spaces

Chapter 5:

M3 Applications: Architectures and Designs

1

Dmitry G. Korzun, 2011-2017

Outline

- § I. Design of M3 Application
- §2. Architectural patterns
- §3. Examples and case studies
- §4. Student projects

2

Dmitry G. Korzun, 2011-2017

§1. Design of M3 Application

- Multi-Agent scenario (execution steps)
 - Shared knowledge (smart space)
 - Cooperation of multiple agents (KPs): indirect interaction
 - Event-based model: subscription
- Reasoning: deducing new knowledge
- ▶ Application Layout (hardware & software)
- Devices, services (processing), end-users (UI)
- Ontology (problem domain)
 - Knowledge structure model
 - Smart space composite model
- KP design
 - List of all KPs and their mapping to the layout
 - KP implementation template (fill for each KP)

3

Dmitry G. Korzun, 2011-2017

Application layout

Devices, services, end-users

- ▶ **Scale:** embedded, mobile, stationary, ...
- ▶ Owner: personal, multi-user, public, ...
- Processing: sensor/producer, consumer, reasoner, a combination
- ▶ **Role:** functions in the smart space
- Interaction: human, machine
- ▶ Platform: Linux, Android, Windows, ...

4 Dmitry G. Korzun, 2011-2017

Ontology

- ▶ Ontology class graph
 - Classes and properties
- ▶ Ontology instance graph
 - Individuals and properties
- Support for reasoning (query-based)
- ▶ Context awareness
- Your ontology development toolkit

> 5

Dmitry G. Korzun, 2011-2017

Smart Space Content: Knowledge Base

- > Problem domain and environment
- Knowledge and its classes
- ▶ Relations among classes
- ▶ Providers, consumers, ...
- Derivative knowledge and reasoning
- Space compositions: personal space, multi-user space, application space, ...

▶ 6

Dmitry G. Korzun, 2011-2017

Applications: Architectures and

Designs

KP Design

- ▶ Function (in scenario)
- Devices and platforms
- ▶ Processing type (architectural role, user)
- ▶ External interfaces (e.g., UI)
- ▶ Knowledge used (shared & local) and algorithms
- ▶ CASE tools

> 7

Dmitry G. Korzun, 2011-2017

Simple project: steps

- Idea (brief description)
- 2. Architecture: cooperation of KPs
 - smart space + KPs + devices
 - scenarios + data flows + presence detection
- 3. Ontology and knowledge base
 - class graph + instance graph
 - reasoning: query-based
- 4. KP design
 - Plan of implementation
- 5. Simple code and demo
 - labs

▶ 8

Dmitry G. Korzun, 2011-2017

Characteristic Properties

- Not a database or a web service
- User localization: "space concept"
 - Surrounding devices
 - > External services if needed
- ▶ Smart services: when, what, to whom, how, ...
- Use of shared data as a system
- Semantic linking: "hub property"

▶ 9

Dmitry G. Korzun, 2011-2017

Service Intelligence ("Smartness")

- Multitude of scenarios (non-fixed priory)
- ▶ Context-awareness
- Adaptability
- Personalization
- Dynamic join/leave of participants

10

Dmitry G. Korzun, 2011-2017

§2. Architectural patterns

- ▶ Participating KPs
 - Different roles in application
 - Different knowledge interpretation
 - Different cooperation strategies within the multi-agent system
- Challenges
 - Dynamics: joining and leaving the space
 - ▶ Smartness of services:
 - ▶ Knowledge reasoning (over the shared content)
 - ▶ Service personalization and context-awareness
 - ▶ Proactive service delivery

11

Dmitry G. Korzun, 2011-2017

Knowledge producers and consumers

- Similarly to a shared database with readers and writers
- No "smartness" (intelligence)

Accumulation and provision

Do not use in your projects in its pure form

▶ 12

Dmitry G. Korzun, 2011-2017

Applications: Architectures and

Designs

Knowledge interaction chains

- ▶ Pipes: linear chains
 - E.g., a simple weather application
- ▶ Tree-based
 - ▶ Each fact produces several new facts
 - ▶ One-to-many synchronization
 - ▶ Epidemic dissemination
- ▶ Network flows
 - ▶ Cycles are possible
- Iterative processing
- ▶ Feedback

▶ 13

Dmitry G. Korzun, 2011-2017

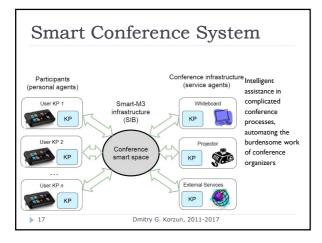
Knowledge mediators

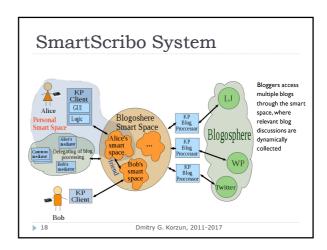
- ▶ Smart space analyzers
 - ▶ Big Brother approach (for proactivity)
 - Services and their composition (see also knowledge interaction chains)
- ▶ Function delegation
 - ▶ Mobile client has low capacity
- Ideal case: client shares small piece of personal info and consume the service

▶ 14

Dmitry G. Korzun, 2011-2017

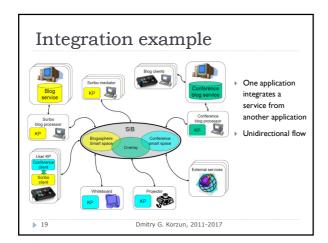
§3. Examples

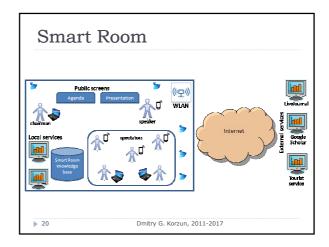

- 1. SuperTux game example (NRC, Helsinki)
- 2. Smart Conference System (SPIIRAS)
- 3. SmartScribo System for multi-blogging (PetrSU)
- 4. Smart Room (PetrSU)
- 5. Social Networks service (FRUCT)
- 6. SmartDiet: Personal Wellbeing Assistant and Diet Planner Mobile Service (TUT, Tampere)
- Open International M3 Semantic Interoperability Workshop, http://www.fruct.org/eit-m3

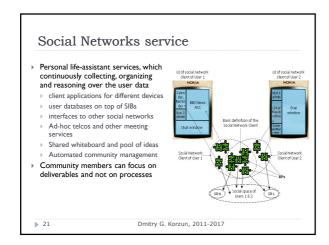

15

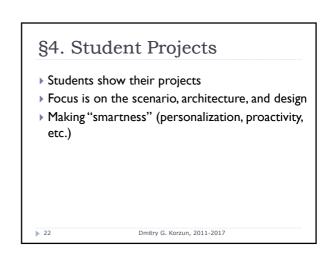
Dmitry G. Korzun, 2011-2017

Personalization and functionality expansion of the popular user services SuperTux game example Simple service composition Media Streamer (N800 & UPPP) Sports Tracker workouts (N95) Home Smart Space extent Space (N800) SuperTux game example SuperTux game example


Dmitry G. Korzun, 2011-2017






Applications: Architectures and

Designs

