Kirill Kulakov, Anton Shabaev

An Approach to Creation of Smart Space-Based Trip Planning Service

The work is supported by project 14.574.21.0060 of Federal Target Program and project 2.2336.2014/K of the Ministry of Education and Science of the Russian Federation.

16th FRUCT Conference
October 30, 2014, Oulu, Finland
Background

- Tourism growth every year, long-term trend is 3.8%
- Large part of individual tourism and small groups
- Organized tourism with infrastructure usage
- Recommender systems with mobile devices
- Trip organization and trip support
Trip planning problem

- Goal: provide detailed trip plan

- Tasks:
 - selection of attractions to visit
 - selection of the route
 - definition of timetable
 - selection of stops and places of accommodation
 - selection of recommended attractions

- Hardest problem (NP-complete class)

- Large computation resources and special algorithms
Trip planning algorithm

Steps of algorithm:

- Definition of start and end points and target of the trip;
- Route creation for selected points and transport;
- Conditions including (stops, accommodation, etc.);
- Time planning (attraction schedule, weather conditions, etc.);
- Recommendations.

Usage:

- before the trip (prepare);
- during the trip (update);
- personal and group trip.
Smart Space usage

- Each service presents as a KP and provides a piece of information
- User agent (mobile application) generates trip planning task
- Route planning algorithm implemented as a mediator
- Proactive service: update timeplan without user request
Service implementations comparison

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Client application</th>
<th>Web service</th>
<th>Smart space service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet connection</td>
<td>Unstable Internet connection, mainly mobile Internet</td>
<td>Single point high speed Internet</td>
<td>Multi point high speed Internet</td>
</tr>
<tr>
<td>Computing resources</td>
<td>Mainly mobile device</td>
<td>High-performance server</td>
<td>High-performance cloud</td>
</tr>
<tr>
<td>Access to external service</td>
<td>Direct access to personal data, service limits</td>
<td>Indirect access to personal data, service limits</td>
<td>Indirect access to personal data, reduced service limits</td>
</tr>
<tr>
<td>Dynamically changed data</td>
<td>Static slice, manual updates</td>
<td>Static slice, periodic updates</td>
<td>Proactive service, dynamic updates</td>
</tr>
<tr>
<td>User relations</td>
<td>Manually</td>
<td>Can be implemented</td>
<td>Can be implemented</td>
</tr>
<tr>
<td>Privacy</td>
<td>High</td>
<td>Medium</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Trip plan updates</td>
<td>Dynamically</td>
<td>On request</td>
<td>Dynamically</td>
</tr>
</tbody>
</table>
Route planning service architecture

Data sources

- weather.com – weather
- geonames.org – binding geo-coordinates and towns
- Foursquare, Wikimapia, Geo2tag etc. – attractions
- Booking services – accommodation
- Openstreetmap + graphhopper – “off-line” navigation service
- Local services – notice, attraction schedule and review
Usage scenario: gathering attractions and events

- Search attraction to visit
- Extension: additional information for attractions and events from review services
Usage scenario: schedule preparation (basic)
Usage scenario: schedule preparation (extended)
Inter-user iterations

- Case: users, who are unwilling to share their plans
- Case: tourists meeting at some of the attractions
- Case: create trip plan for a tourist group
Conclusion

Current state: approach to use of Smart Space technology

- Architecture
- Data sources
- Core scenarios
- Inter-user iterations

Future plans:

- Design data model
- Trip planning ontology
- Implementation
- Evaluation