Andrey Vdovenko, Dmitry Korzun

Active Control by a Mobile Client of Subscription Notifications in Smart Space

The work is supported by project # 1481 from the basic part of state research assignment # 2014/154 and by project # 2.2336.2014/K of the Ministry of Education and Science of the Russian Federation.

16th FRUCT Conference
October 30, 2014, Oulu, Finland
Smart-M3 Platform

- Implements infrastructure of Smart Spaces for knowledge sharing by agents (M3-agent, knowledge processor, KP)
- SIB: Semantic Information Broker for maintenance of shared content
- RDF data representation model: semantic interoperability and ontology-driven programming
SmartRoom System

- Many services (composition, personalization)
 - informational, control, collaborative work, ...
- Participation of many users (user can be indoor and outdoor)
 - Many (mobile) clients running and accessing services
- Users come with own devices
 - Many mobile platforms, IoT-like device diversity
Publish/subscribe in Smart Spaces

- **Subscription process:**
 - a publisher produces some informational content
 - subscriber is interested in certain content
 - a change can affect many subscribers
 - content can be changed by different publishers

- **For Smart-M3:**
 - subscription requires its client to establish a network connection
 - changes are controlled on the smart space side
 - the corresponding notifications are sent to the client (passive)
Delivery guarantee problem

- Subscription Problems:
 - Broker (SIB) doesn’t check delivery for already sent notifications
 - In mobile clients:
 - the subscription is affected by losses of notifications
 - fault tolerance is essentially affected due to the specifics of wireless network communication (Wi-Fi, 3G, etc.)

- Solution:
 - Active control by a mobile client itself for subscription notifications
 - Additional checks allows mitigate the effects of notification losses
The tradeoff of passive and active notifications:

- Notifications arrive sequentially to the client
- \(i \) is the sequence number of a notification
- \(t_i \) is the time interval
- \(k_i \) is the observed number of losses
- \(\lambda = \lambda_i = k_i / t_i \) is the instant rate for the notification loss

\[\rightsquigarrow \text{The client is interested in minimizing } \lambda. \]
Subscription process example

$t_{i-1} \leftarrow k_{i-1} = 1$

$t_i \leftarrow k_i = 1$

Check on losses
Mathematical Model

- With active notifications, \(t_i \) becomes a control variable for the client
- Let the client have observed no losses in \(t_{i-1} \), i.e., \(k_{i-1} = 0 \):
 \[
 t_i = t_{i-1} + \delta
 \]
 (1)
- Let the client have observed certain losses in \(t_{i-1} \), i.e., \(k_{i-1} > 0 \):
 \[
 t_i = \alpha t_{i-1} + (1 - \alpha) \frac{t_{i-1}}{k_{i-1} + 1}
 \]
 (2)
- Combining (1) and (2) we construct the recurrent system
 \[
 t_i = \begin{cases}
 t_{i-1} + \delta & \text{if } k_{i-1} = 0, \\
 1 + \frac{\alpha k_{i-1}}{k_{i-1} + 1} t_{i-1} & \text{if } k_{i-1} > 0.
 \end{cases}
 \]
 (3)
Experiments: Adaptive Strategy

Behaviour of strategy for different distribution of notifications losses:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>$k_i \in [at_i, bt_i]$ uniformly at random</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Poisson distribution</td>
<td></td>
<td>$k_i P(\lambda t_i)$ for $\lambda > 0$</td>
</tr>
<tr>
<td>λ</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Our strategy:

$$t_i = \begin{cases}
 t_{i-1} + \delta \\
 1 + \alpha k_{i-1} \frac{t_{i-1}}{k_{i-1} + 1}
\end{cases}$$

$\alpha = 0.5$, $\delta = 20$

![Graph showing the evolution of check intervals over time for uniform and Poisson distributions.](image)
Experiments: Compared Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive strategy</td>
<td>α</td>
<td>0.5</td>
<td>$\alpha = 0.5$ trades off previous and recent observations equally. $\delta = 20$ s is equal to the interval for one loss on average.</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Multiplicative decrease</td>
<td>factor</td>
<td>0.5</td>
<td>When $k_{i-1} > 0$ the check interval t_i is reduced by 2. If $k_{i-1} = 0$ then set $t_i = t_0$.</td>
</tr>
<tr>
<td>Random selection</td>
<td>a</td>
<td>10</td>
<td>Random strategy when t_i is selected from interval (a, b) at random.</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Constant check interval</td>
<td></td>
<td></td>
<td>The check interval is always set $t_i = t_0$.</td>
</tr>
</tbody>
</table>

The initial value is $t_0 = 20$ s, which confirms the intuition that one loss happens on this interval on average.
Experiments: Comparison

<table>
<thead>
<tr>
<th>Metric</th>
<th>Multiply decrease</th>
<th>Random selection</th>
<th>Constant interval</th>
<th>Adaptive strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{avg} = \frac{1}{n} \sum_{i=1}^{n} k_i \text{ (min)}$</td>
<td>0.59</td>
<td>1.19</td>
<td>0.89</td>
<td>1.23</td>
</tr>
<tr>
<td>$t_{avg} = \frac{1}{n} \sum_{i=1}^{n} t_i \text{ (max)}$</td>
<td>14.23</td>
<td>19.87</td>
<td>20</td>
<td>28.8</td>
</tr>
<tr>
<td>$\lambda = \frac{k_{avg}}{t_{avg}} \text{ (min)}$</td>
<td>0.042</td>
<td>0.06</td>
<td>0.045</td>
<td>0.041</td>
</tr>
<tr>
<td>$\lambda_{avg} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{t_i} \text{(min)}$</td>
<td>0.078</td>
<td>0.06</td>
<td>0.045</td>
<td>0.043</td>
</tr>
</tbody>
</table>
Experiments: Variation of δ in the Adaptive Strategy

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>10 20 40 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} k_i$ (min)</td>
<td>1.06 1.14 1.77 2.16</td>
</tr>
<tr>
<td>$t_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} t_i$ (max)</td>
<td>22.01 24.76 32.6 43.86</td>
</tr>
<tr>
<td>$\lambda = \frac{k_{\text{avg}}}{t_{\text{avg}}}$ (min)</td>
<td>0.048 0.046 0.047 0.054</td>
</tr>
<tr>
<td>$\lambda_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{t_i}$ (min)</td>
<td>0.047 0.045 0.046 0.054</td>
</tr>
</tbody>
</table>

- Smaller values for δ leads to less losses
- Bigger values reduce the load the client shifts to the SIB
Conclusion

- Studied the problem of subscription fault tolerance
- Proposed a simple mathematical model for active control
- Start to apply the model in real settings

Thank you for attention

E-mail: vdovenko@cs.karelia.ru