Supporting Nomadic Agent-based Applications in the FIPA Agent Architecture

Heikki Helin (Heikki.j.Helin@teliasonera.com)
FDPW’03, Petrozavodsk, June 26th, 2003
Introduction

• Multi-agent system implementing a middleware providing (agent-based) applications with tools for adaptation in a nomadic environment

• Nomadic environments enable new ways to access services
 → anywhere, at any time, and using any device

• Challenges that need to be addressed:
 - Varying QoS of the wireless networks
 - Limitations of mobile devices
 - Contextual variability (location, time, user preferences, …)

• Adaptation to the environment is the key issue
Presentation Outline

• Agent Architecture for Wireless World
 - Based on FIPA’s architecture

• Ontologies for Wireless World
 - What kind of ontologies are needed
 - Examples

• Agent Communication for Wireless World
 - Layered model & optimization techniques
Agents?

Never send a man to do a machine’s job
- *agent Smith, Matrix*
Wireless/Nomadic Environment

- Typical characteristics
 - Low throughput, long delays, unreliable, ...
 - *Variability*
 - Disconnected mode of operation is the most common state

- Different kind of (wireless) networks
 - Seamless roaming will be important in the future

- Currently we consider long thin networks
 - GSM, HSCSD, GPRS, UMTS, ...
Agents in Nomadic Environments?

- Suitable for complex environments
 - Internet is a complex environment...
 - Wireless Internet is even more complex...
 - Invisible Internet...

Semantic Web

Ambient networks

QoS

Peer-to-peer

Intelligent P2P

Pervasive Computing

Ubiquitous Computing

Ontologies

Ad hoc networks

Distributed Artificial Intelligence
Agent Architecture in Wireless World
FIPA Agent Platform

DF = Directory Facilitator
AMS = Agent Management System
ACC = Agent Communication Channel
FIPA Agent Platform
FIPA Agent Platform

Mobile Device

Fixed Network Host

(Wireless) Connection
FIPA Nomadic Application Support

Knowledge Sharing

Controlling & monitoring

Mobile Device

Fixed Network Host

(Wireless) Connection
FIPA Nomadic Application Support
Ontologies in Wireless World
An ontology is an explicit description of a domain:
- Concepts
 - “Wireless network”, “GSM”, “GPRS”, ...
- Properties and attributes of concepts
 - Each “Network” will have “Operator”, “Location”, “Properties”, ...
 - Every “IEEE802.11a” is a “WLAN”
- Constraints on properties and attributes
 - The name of a network operator is a string
 - GSM network identifier consist of CountryCode and NetworkID
- Individuals (often, but not always)

An ontology defines
- a common vocabulary
- a shared understanding
Ontologies in Wireless world
Example Ontology - Quality of Service
Example Instance

<dam1:Class rdf:ID="GSM">
 <dam1:subClassOf rdf:resource="#WirelessNetwork" />
</dam1:Class>

<Operator rdf:ID="Sonera" />

<GSM rdf:ID="SoneraGSM">
 <operatedBy rdf:resource="#Sonera" />
 <qosProperties>
 <LineRate rdf:resource="#GSMLineRate" />
 <Delay />
 </qosProperties>
 <hasService> ... </hasService>
 <availableAt> ... </availableAt>
</GSM>
Agent Communication in Wireless World
Agent Communication

- Objects use telepathic communication
 - Direct manipulation of each other’s knowledge base

- Agents use more “human-like” communication
 - Speech act theory
 - Agent communication languages
 - e.g., FIPA-ACL, KQML, ...
 - Ontologies for knowledge sharing
Layered Model of Agent Communication

1. **Bearer Networks**
2. **Transport and Signalling**
3. **Message Transport Protocol**
4. **Message Envelope**
5. **Agent Communication Language**
6. **Content Language**
7. **Conversation**

Protocols and Standards
- TCP/UDP
- IIOP
- HTTP
- RMI
- FIPA Message Envelope
- FIPA-ACL
- KQML
- SL
- KIF
- CCL
Message Transport

• How messages are transferred between agents
• Desiderata
 - Reliability
 - Efficiency
 - Dynamic adaptation
• Issues
 - Performance problems
 - Terminal mobility
 - Thin clients
Message Envelope

- FIPA "specific" layer

- Defines how messages are delivered
 - independent of message transport protocols

- Different encoding options
 - XML, Bit-efficient, IIOP/IDL

- Bit-efficient encoding similar to bit-efficient ACL
ACL Encoding

• Options
 - String (s-expression), XML, Bit-efficient

• Space-efficient
 - ...by definition

• Time-efficient
 - much faster
 • nice for every application; not only for wireless
 • necessity for
 - high performance applications
 - highly utilized servers
 - simple parser → appropriate for thin clients
Content Languages

- **FIPA-SL**
 - All-purpose content language
 - S-expression (w/ deflate), XML, Binary-XML (w/ special tokens)

- **FIPA-CCL**
 - Language for constraint satisfaction problems
 - XML & Binary-XML

- Results similar to those of message envelope and ACL
Conversation Layer

- Optimizing/modifying existing conversation protocols?
- Developing new conversation protocols?
- Selecting conversation protocol based on current environment
 - low bandwidth \rightarrow simple protocol \rightarrow not so good end result
 - more bandwidth \rightarrow more complicated protocol \rightarrow better end result
Possible Applications

• **Wireless Web Browsing**
 - Intelligent adaptation to changing communication environments
 - Basis for many applications

• **Location-aware applications**
 - Seamless roaming between different network technologies
 - Many other possibilities

• **Mobile Auction scenario**
 - (Intelligent) management of bid timeouts
Conclusions

- **Middleware architecture**
 - Several applications implemented on top of that
 - Extensions by 3rd parties
 - Standardized by FIPA (informative)

- **Wireless Network/QoS Ontology**
 - Minimal, but usable
 - Standardized by FIPA

- **Efficient communication**
 - Optimizations/tailoring needed at all layers
 - Not only works, but
 - Mostly standardized by FIPA
 - Implemented by major FIPA platforms
Thank you

Questions?